COMPETITION AND MERGERS AMONG NONPROFITS

Jens Prüfer

ABSTRACT

Should mergers among nonprofit organizations be assessed differently than mergers among for-profit firms? A recent debate in law and economics, boosted by apparently one-sided court decisions, has produced the result that promoting competition is socially valuable regardless of the particular objectives of producers. In this paper, I challenge the general validity of this result by showing that it may indeed depend on the particular objectives of producers whether a merger between two nonprofits is welfare-decreasing or -increasing. This implies that it is impossible to assess the net effects of a merger between two nonprofits without examining the objectives of the owners involved.

JEL: L44; L31; L22; K21

I. INTRODUCTION

Should mergers among nonprofit organizations be regulated? If so, should they be treated differently by antitrust law from mergers among for-profit firms? According to Richman, U.S. courts seem to believe so.1 Focusing on the hospital market, he reports that antitrust enforcement agencies have lost “each of the seven suits initiated since 1994 to challenge proposed hospital mergers.”2 A major reason for this defeat was that the empirical evidence on pricing behavior of nonprofits when compared with

2 Id. at 126.
for-profits is largely mixed and suffers from data problems. Empirical evidence on the effects of mergers between nonprofits is very limited. An exception is a case study by Vita and Sacher. Courts seemed to grant merging hospitals the benefit of the doubt. According to Richman, this was sometimes grounded on ideological reasons; for instance, the case of FTC v. Butterworth Health Corp. “lent support to those who argued that judges have a deep-seated hostility to subjecting health care providers to competition.”

This perceived view of the courts was countered recently. Philipson and Posner have analyzed the questions raised above and concluded that “[b]ecause promoting competition turns out to be socially valuable regardless of the particular objectives of producers, the fact that antitrust law does not distinguish between the two sectors [nonprofit and for-profit] is efficient.”

Although I do not object to the specific result found by Philipson and Posner, which is based on modeling output decisions of a monopolistic nonprofit organization maximizing a combination of output and consumption, I challenge the general validity mentioned in the above quotation. In this paper, I show that it may indeed depend on the “particular objectives of producers” whether a merger between two nonprofits is welfare-decreasing or -increasing. This implies for antitrust law that it is impossible to assess the net effects of a merger between two nonprofits without examining the (likely) objectives of the owners involved.

My starting point is the idea that, although it is widely undisputed that owners of for-profit firms maximize profits, it is not clear at all what decision-makers in nonprofits optimize. An earlier draft of this paper proposes a governance-based model of nonprofits, which posits that there exist different types of nonprofit organizations that can be distinguished by the objective function of the pivotal owner, that is, the

5 See Richman, supra note 1, at 125.
6 Id. at 134.
8 Here the term “owners” is used for the persons holding residual de facto control over an organization, as is common in the property rights literature initiated by Sanford J. Grossman & Oliver Hart, The Costs and Benefits of Ownership: A Theory of Vertical and Lateral Integration, 94 J. POL. ECON. 691 (1986), and Oliver Hart & John Moore, Property Rights and the Nature of the Firm, 98 J. POL. ECON. 1119 (1990). In contrast, an owner can or cannot have rights to residual income. In nonprofits, the nondistribution constraint explicitly waives income rights.
person who is decisive in the nonprofit’s decision-making process. In the paper at hand, I only model one type, a so-called consumer-dominated nonprofit, because this is sufficient to show that owner objectives can critically matter for the welfare effects of mergers. Nevertheless, it is necessary to employ a mathematical model to show under which conditions a merger can actually increase welfare—and to demonstrate the transmission channels of this effect.

I model duopoly competition with quality-differentiated goods in a game related to that of Shaked and Sutton, where the players first determine quality levels and second prices. The healthcare market serves as a suitable application; higher education is an alternative. I assume that consumers (patients) have inelastic demand for a basic service and heterogeneous preferences for additional quality. In a consumer-dominated nonprofit, the pivotal owner has an interest in buying the product himself and may have a preference for additional quality. When determining the quality produced, he will thus trade off the consumption utility from high quality and the price that all consumers, including himself, must pay for the product. Nonprofits are prohibited both from making losses and from distributing potential profits to their owners; that is, they face a nondistribution constraint. After characterizing equilibrium behavior under duopoly competition, I impose a merger on the two organizations and examine its welfare effects.

Compared with Philipson and Posner, I enrich the scope of analysis by (1) introducing quality as a strategic variable, (2) introducing strategic duopoly competition, (3) analyzing the effect of mergers among consumer-dominated nonprofits, and (4) introducing an agency problem within the nonprofit by assuming “separation of ownership and control.” (4) refers to the assumption that, in each nonprofit, owners take long-term decisions by determining quality, although the day-to-day business is run by an employed manager who determines the price level. To maximize his leeway to enjoy nonmonetary perks, I assume the manager maximizes profits. The cost function of the nonprofit is unobservable for owners, who have no specialized business knowledge. Hence, the manager has some discretion with respect to pricing.

The key result of this paper is that, even without assuming economies of scale, merging two consumer-dominated nonprofits can increase total welfare. The intuition for this result is the following. First, I find that there is no equilibrium in which the owners set different quality levels. This insight complements Shaked and Sutton, who show that profit-maximizing

firms always differentiate quality levels in equilibrium. Producing the same quality level confronts the managers with Bertrand price competition in a homogeneous goods market. Consequently, outside competition constrains managers from setting a price above marginal cost. Owners can foresee this effect. If they have a high personal preference for quality, they will determine a high quality level. However, this can be higher than the welfare-optimal quality level, yielding too much quality and driving some consumers out of the market.

If such duopolistic nonprofits merge and form a monopoly, the monopolist’s manager is not constrained by product market competition and sets a price above marginal cost. To maximize his individual net consumption utility, the pivotal owner thus needs to reduce the quality level compared with the duopoly case, thereby reducing overproduction of quality. If the basic utility from consumption is high and the pivotal owners have a high preference for quality, the positive effect of reducing too much quality outweighs the negative effect of monopoly pricing on total welfare. High levels of basic utility (or regulated minimum quality) can be found in the hospital sector, for instance. The total welfare gain is due to the fact that the manager’s monopoly pricing creates positive producer surplus. On a more theoretical level, the model provides an example of how one market imperfection—excessive quality production due to the individual preferences of nonprofit owners—can sometimes be mitigated by another distortion—increased market power of the manager.

These results complement Philipson and Posner, as they depend on a different objective function of nonprofit owners. They imply for antitrust law that the organizational form of merging parties and their owners’ objectives do matter. Mergers among nonprofit organizations should not necessarily be treated in the same way as mergers among for-profit firms. As far as possible, an examination of the owners’ objectives should be part of merger case analysis involving nonprofits. This notion is absent in current merger guidelines both in the United States and the European Union.

This paper is organized as follows. In Part II, I review the related literature. The model is described in Part III. In Part IV, I describe the effects of a nonprofit merger from duopoly to monopoly (the appendix contains a game theoretical treatment of Part IV). I discuss some key assumptions in Part V and conclude in Part VI.

II. RELATED LITERATURE

This paper relates to several strands of the literature in economics. First, it shares a common topic, horizontal mergers, with the classical studies of

11 Id.
Salant, Switzer, and Reynolds,12 Deneckere and Davidson,13 Perry and Porter,14 Farrell and Shapiro,15 and more recent work, such as Bian and McFetridge16 and Davidson and Mukherjee,17 to name just a few. With the exception of Philipson and Posner, however, the impact of the organizational form of the merging parties on the welfare effects of mergers is largely ignored.

The second strand of related literature is on theories of organizational choice between the for-profit and the nonprofit forms: Glaeser and Shleifer,18 Kuan,19 Francois,20 and Herbst and Prüfer21 provide formal studies contrasting nonprofits and firms. The work of Hansmann22 offers a valuable descriptive approach. In this literature, the main questions studied are on the factors that make the nonprofit organizational form more attractive than profit-maximizing alternatives (apart from tax exemption).

Third, there is a related literature, both theoretical and empirical, that deals with the question: what is the objective function of nonprofits? Gertler and Kuan provide an overview of this literature and a clever empirical approach, based on sales prices of entire nonprofit organizations, for how to identify the value of a certain nonprofit mission to the sellers of a nonprofit.23 Other empirical studies of nonprofit objectives include Deneffe and Masson,24 Horwitz,25 and Horwitz and Nichols,26 which identify a set of

13 Raymond Deneckere & Carl Davidson, Incentives to Form Coalitions with Bertrand Competition, 16 RAND J. ECON. 473 (1985).
26 Jill R. Horwitz & Austin Nichols, Hospital Ownership and Medical Services: Market Mix, Spillover Effects, and Nonprofit Objectives, 28 J. HEALTH ECON. 924 (2009).
several objective functions in practice. In an earlier draft of this paper, I propose a governance-based model of nonprofits and speculate that there exist different types of nonprofit organizations that can be distinguished by the objective function of the pivotal owner. The paper at hand relates to that approach but only models one type, a so-called consumer-dominated nonprofit.

Fourth, Glaeser speculates that competition among nonprofits is important to keep those organizations well governed. This idea is supported by the main result of my paper, which shows that product market competition can substitute for the absence of binding intraorganizational constraints, that is, good internal governance. Castaneda, Garen, and Thornton study the effects of competition for donors on the behavior of nonprofits. They examine neither competition on the product market nor mergers among nonprofits, though.

The paper most closely related to this one is Philipson and Posner, which builds on Lakdawalla and Philipson. In those models, the owners of nonprofit organizations prefer increased output. The main result is that, after a merger, nonprofit organizations have the same incentives to reduce output and, hence, to decrease social welfare as for-profit firms. This result is based on the assumption that nonprofit owners can exchange profits into own consumption. Consequently, the owners appear as de facto profit maximizers. This assumption is inconsistent with the formal nondistribution constraint. I should note, however, that some other authors also allow nonprofits to distribute profits to their owners, be it directly (Chau and Huysentruyt or indirectly via price subsidies (Kuan) or via nonmonetary perks an owner or manager of a nonprofit could extract (Glaeser and Shleifer). In turn, Bilodeau, and Slivinsky and Francois assume in their models that the nondistribution constraint cannot be relaxed. In the paper at hand, I use an intermediate approach: owners cannot extract profits, but there is a manager who maximizes profits to enjoy nonmonetary benefits.

27 See Prüfer, supra note 9.
32 Kuan, supra note 19.
33 Glaeser and Shleifer, supra note 18.
35 Francois, supra note 20.
III. THE MODEL

A. Demand: Heterogeneous Preferences for Quality

There is a unit mass of consumers. Each consumer i demands one unit of a product and obtains utility from consumption $u^i(p, b, q, \theta^i)$, which is decreasing in the first argument and increasing in the others. p is the uniform price charged for a unit of the product or service. $b \geq 0$ is the exogenous basic utility that providers must produce to get a license to offer their services. This reflects inelastic unit demand for a service of basic quality and the existence of a regulator ensuring a minimum quality standard in the industry. θ^i, which is drawn from a uniform distribution over the interval $[0,1]$, denotes the individual preference for additional quality, q. Henceforth, I will use the following quasi-linear specification of consumer i's utility function, but drop the index i wherever possible:

$$u^i(p, b, q, \theta^i) = b + \theta^i q - p. \quad (1)$$

B. Supply: A Consumer-Dominated Nonprofit

There are two producers $j \in \{A, B\}$ competing for the consumers. Market entry costs of third parties are prohibitive. Owners of the organizations, that is, its final decision-makers, are risk-neutral and have zero reservation utility. They determine quality levels first; only then the managers determine prices (see below for more details on timing). Without loss of generality, I assume that producers have the common belief that $q_A \geq q_B$. Monetary profits are defined in the usual way:

$$\pi_j = p_j s_j - C(q_j),$$

where s_j denotes producer j's output, which equals its market share if the market is covered. $C(q_j) = s_j q_j^2$ are total costs. I normalize all other costs to zero. This specification captures that production of higher quality gets more and more expensive and that higher quality also increases marginal costs of output. It rules out economies or diseconomies of scale, which are discussed in some empirical papers on healthcare markets without finding clear-cut results. Moreover, it is obvious that the introduction of economies

36 Shaked and Sutton show that, in a market with quality-differentiated goods and under standard assumptions, at most two goods can have a positive market share. Shaked & Sutton, supra note 10.

(diseconomies) of scale would benefit (penalize) a single entity over two competitors. Therefore, assuming economies (diseconomies) of scale would make the case for (against) mergers independent of the type of merger even stronger. Because this paper focuses on the relative welfare effects of mergers among nonprofits compared with mergers among for-profit firms, I assume the most simple case of constant returns to scale, where marginal and average costs of production are constant in output.

Nonprofits are required to meet a *non-distribution constraint*: if profits are positive, they can either be retained or be donated to a charity not modeled as a strategic player, which is a common legal rule internationally. The charity is part of the economy, hence donations are not lost when calculating total welfare. This rules out profit maximization as the objective function of rational owners. However, it is not clear in general which objective function owners of nonprofits do maximize (see the discussion in Part II).

I model competition between so-called consumer-dominated nonprofits. In such an organization, by assumption, the pivotal owner of organization \(j \) maximizes his individual net consumption utility. In practice, this could refer to a hospital where the pivotal owner lives close-by and expects that he will be treated in the hospital himself. For instance, if the votes of each nonprofit board member had equal weight, the member with median preferences for quality would be the pivotal owner. Formally, the consumer-owner solves:

\[
\max_{q_j} u = b + \theta q_j - p_j, \tag{2}
\]

where \(\theta \) is his individual preference for quality.

To reproduce the stylized fact that in many nonprofits ownership and control are separated and that the interest of the persons with day-to-day control is not necessarily aligned with the persons holding residual control, I model a *manager* in each organization (see Part V for a discussion of this assumption). Although the owners can determine the long-term variable, quality, and set up the manager’s employment contract, the manager is in charge of the short-term variable, price.\(^{38}\)

As the focus of this paper is not on contractual design, I assume that quality is contractible. This assumption is a reduced form of the following set of assumptions. Assume that quality is noncontractible but observable for buyers after consumption. Thus, if the pivotal owner is a buyer himself, he will learn the quality produced by the manager. If he is not satisfied, he can refuse to prolong the manager’s contract. Hence, the manager has an incentive to produce the quality preferred by the pivotal owner. Assuming that quality is contractible has the same effect. Alternatively, there could

\(^{38}\) Because I use only a one-shot game, “long-term” and “short-term” are translated into the model by letting owners choose quality before the manager determines price.
exist a monitoring technology by which the owners can learn the quality produced.

The manager will only be paid a wage if he produces the quality specified by the owners. Because of his specialized knowledge on running the organization, however, the manager has private knowledge on the cost function under which it operates. Consequently, he has discretion when setting the price.

Notwithstanding the owners’ goals, the manager maximizes economic profits. This is a shortcut to assuming that he maximizes his own nonmone-
tary utility. To achieve this goal, he needs positive economic profits to spend on the nonmonetary benefits such that the final accounting profit is zero. Those benefits could come in the form of perks or as “enjoying a quiet life,” as in Bertrand and Mullainathan.39

C. Timing

To produce benchmark results, I assume that the competing producers are symmetric. This means that the pivotal owners have similar preferences for quality: \(\theta_A = \theta_B \). I assume complete information with respect to quality and price levels and solve the game for subgame-perfect equilibria in pure strategies in the appendix. The timing is related to Shaked and Sutton:40

\[
\begin{align*}
(t = 1) & : \text{Quality. The pivotal owner of each organization } j \text{ chooses a level of quality } q_j \geq 0. \\
(t = 2) & : \text{Price. In each organization, the manager picks a price } p_j \text{ for the product, thereby incurring costs } C(q_j). \\
(t = 3) & : \text{Buying. Each consumer learns the quality and price levels of the nonprofits and his own } \theta \text{ and may buy one product.}
\end{align*}
\]

IV. ANALYSIS

Before analyzing mergers among nonprofits, I characterize the social planner’s preferred solution, given that he only determines one quality level. In the unconstrained first-best case, the social planner would choose two distinct qualities. A low-quality product would be sold for a low price, thereby making sure all consumers can afford consumption, and a high-quality product would be sold for a higher price, thereby satisfying consumers with a high preference for quality.

As will be clear below, however, under duopoly, the owners of nonprofits A and B voluntarily set the same quality level. Then, to show the main

40 Shaked & Sutton, supra note 10.
result of this paper, it is sufficient to analyze the one-product case under monopoly (if the monopolist sets two quality levels, the main result becomes even stronger). To compare results, it is sufficient to study the quality and price decisions of a social planner in the one-product case.

A. Social Planner’s Choice in the One-Product Case

A social planner maximizing welfare—the sum of consumer surplus and producer surplus—solves:

$$\max_{q,p} W = \int_0^1 (b + \frac{1 + \theta}{2} q) d\theta - (1 - \theta)q^2. \quad (3)$$

In equation (3), $\theta = (p - b)/q$ defines the marginal consumer for $q > 0$ who is indifferent between buying the product and not buying.\(^{41}\)

The social planner sets the price equal to marginal costs of production: $p = q^2$. Hence, output is $s = (1 - \theta) = 1 + (b/q) - q$, which means that demand is quality sensitive as long as $b < q^2$. Substituting this into equation (3) reduces the social planner’s maximization problem to:

$$\max_q W = \begin{cases}
(b + q - q^2)^2 & \text{if } b < q^2, \\
2q & \text{if } b \geq q^2.
\end{cases} \quad (4)$$

This expression illustrates the tradeoff of the social planner: only a high quality level lets quality-loving consumers (high θ-types) enjoy high utility. On the other hand, producing a low quality level allows for selling the good for a low price and therefore increases demand, which is especially good for welfare if the basic utility b is large. However, if $b \geq q^2$, there is no tradeoff anymore, because further quality reduction (and subsequent price reduction) does not increase demand further on.

In Appendix A, I calculate the social planner’s preferred quality and price levels and the corresponding total welfare. The main intuition of those results is that the level of the basic utility b equally enjoyed by all consumers when they get hold of the product matters a lot. If b is sufficiently high, the social planner will set a price that makes sure all consumers can afford the product and thereby enjoy the high basic utility. This avoids inefficient exclusion at the lower end of the preference-for-quality spectrum. Then, all revenues are used to produce additional quality, thereby paying some tribute to quality-loving consumers. In contrast, if b is low, it does not pay for the social planner to sell to all consumers. Consequently, the lower the basic utility is, the higher the social planner pushes additional quality (and price), which drives out more and more consumers.

\(^{41}\) This formulation of welfare uses the fact that the average θ of buying consumers is $(1 + \theta)/2.$
B. Duopoly Competition

In \(t = 3 \), consumers choose which producer from which to buy. A consumer prefers to buy from organization A if he cannot increase his net consumption utility by buying from B, that is, if \(b + \theta q_A - p_A \geq b + \theta q_B - p_B \). Solving this expression for the indifferent consumer located at \(\theta \) gives:

\[
\theta = \frac{p_A - p_B}{q_A - q_B}.
\] (5)

To sell a positive quantity, producer B has to make sure that the participation constraint of consumers holds, that is, that \(b + \theta q_B - p_B \geq 0 \). Solving this expression for the consumer who is indifferent between buying and not buying gives:

\[
\theta = \frac{p_B - b}{q_B}.
\] (6)

It follows from equation (6) that all consumers buy some product (\(\theta = 0 \)) if \(p_B \leq b \). In this case, \(s_B = 1 - s_A \). Similarly, it follows from equation (6) that no consumer will buy any product if \(\theta = 1 \), which holds for \(p_B \geq b + q_B \).

Due to assumed beliefs, that \(q_A \geq q_B \), the consumers with highest preferences for quality, located between \(\theta \) and 1, will buy from A. Consumers with medium preferences, located between \(\theta \) and \(s_A \), will buy from B. Consumers with low-quality preferences, located below \(s_A \), will not buy at all. Summarizing:

\[
s_A = 1 - \frac{p_A - p_B}{q_A - q_B}; s_B = \frac{p_A - p_B}{q_A - q_B} \text{ if } p_B \leq b,
\] (7)

\[
s_A = 1 - \frac{p_A - p_B}{q_A - q_B}; s_B = \frac{p_A - p_B}{q_A - q_B} - \frac{p_B - b}{q_B} \text{ if } b < p_B < b + q_B.
\] (8)

\[
s_A = s_B = 0 \text{ if } p_B \geq b + q_B.
\] (9)

Henceforth, I will refer to equation (7) as the case where the market is covered, to equation (8) as the case where demand is elastic, and to equation (9) as the case where the market breaks down.

In \(t = 2 \), managers determine the prices \(p_A \) and \(p_B \). The manager of organization \(j \), who maximizes profits, chooses \(p_j \) to solve:

\[
\max_{p_j} p_j s_j(p_j) - s_j(p_j)q_j^2.
\] (10)

In Appendix B, I solve the model for a subgame-perfect equilibrium in which both nonprofits have positive market shares. To do this, I first establish that in duopoly competition between symmetric nonprofits, there exists no subgame-perfect equilibrium in pure strategies in which \(q_A \neq q_B \). Instead, in such an equilibrium, \(q_A = q_B \).
The idea behind this result is the following. Consumer-owners prefer that nonprofits price according to marginal cost and do not charge a markup on top of marginal cost. This holds because a positive markup increases the price they need to pay as consumers in $t = 3$, but the sellers’ profits associated with such a markup do not give the owners additional utility due to the nondistribution constraint. Next, I show that the only way for nonprofit owners to constrain their managers from setting a price above marginal cost is to choose a similar level of quality in both nonprofits in $t = 1$ and, thereby, to let the managers face Bertrand competition with homogeneous products in $t = 2$. This result complements Shaked and Sutton, who show that, in equilibrium, duopolistic profit-maximizing firms never produce the same level of quality—for the very reason to avoid Bertrand price competition.\footnote{See Shaked & Sutton, supra note 10, at 7.}

That result is also interesting from another perspective. By assumption, the managers in my model have some discretion over pricing, which they are eager to use, because their objective function is different from the one of owners. However, despite the lack of intraorganizational constraints on managerial behavior, I find that nonprofit owners can strategically use product market competition to discipline their managers. This discipline forces managers to price according to marginal cost and, hence, takes away their market power. It gives the owners the maximum amount of resources, which they can spend according to their objective function, (2). As a consequence, subgame-perfect equilibrium prices in duopoly competition are $p_A^* = p_B^* = q_A^2 = q_B^2$, and both producers share the market equally.

As the next step in Appendix B, I calculate equilibrium qualities, prices, and market shares for the cases where the market is covered and where demand is elastic. Which of the two cases occurs depends on the owners’ preference for quality, θ, and the basic utility from consumption, b. I show that owners increase quality in line with their own preferences for quality. Due to the positive basic quality b, this has the effect that, for low θ, all consumers buy the product, even if they do not value additional quality, $q > 0$, at all. If θ exceeds a certain threshold, the consumers with the lowest preference for additional quality drop out of the market. Due to the individual utility maximization of the consumer-owners, however, the market never breaks down, even if θ reaches its maximum, 1.

To conclude the analysis of the duopoly competition case, I present the corresponding welfare result in Appendix B, that is, the precise levels of consumer surplus, producer surplus, and the sum of both, total welfare. This result will be interpreted below, where I compare it with welfare in the monopoly case, which is the topic of the following section.
C. Merger to Monopoly

Now let the two nonprofits merge and form a monopoly in the market. I do not assume a special reason for the merger, because the focus of this paper is on the impact of the nonprofit organizational form on the welfare effects of the merger. Therefore, the subsequent analysis could come on top of a traditional merger analysis that focuses on aspects other than organizational form. In particular, I rule out efficiency gains of mergers because of economies of scale.

After a merger, there is only one pivotal owner, by definition. However, there could still be two products, A and B, such that the owner could determine two quality levels, q_A and q_B. Nevertheless, because of the fact that there is only one pivotal consumer-owner and that this owner only has an individual demand of one unit, it is sufficient for him to tailor one product (quality) to his needs. He is indifferent with respect to the second quality level. Therefore, I assume that the single owner determines a single quality level, which is produced by a single manager. Note that introducing a second product that serves consumers who cannot afford the pivotal owner’s preferred quality would increase the welfare of the merger scenario when compared with the welfare of the single product market modeled here. This would make the main result of this paper, comparing welfare under duopoly and under monopoly, even stronger (as is explained below).

It is also practically impossible for the owner to hire two managers and let each one run one production facility, thereby facing competition from the other manager. This would not work because those two managers would need to be monitored by a specialist, a job that the owner cannot perform himself. The specialist, however, would act as a monopolistic manager with discretion over pricing. If instead the owner had the expertise to monitor managers, he could run one nonprofit—the one that produces the good he wishes to consume—himself. Along the same lines, the assumption that quality is contractible depends on the fact that the owner actually consumes the product himself (as is explained in Part III.B). As he only demands one unit, it is de facto impossible to contract on two quality levels.

Note that the fact that it is sufficient to study the one-product monopoly case also explains why the social planner’s preferred choice of quality and price was characterized for the one-product case in Part IV.A.

In Appendix C, I calculate the subgame-perfect equilibrium consisting of the quality and price choices of the monopolistic nonprofit owner and the resulting demand for the single product offered in the market. I show that demand is elastic if the owner’s preference for quality, θ, is sufficiently high. If it is low, the owner prefers to set quality to such a low level—and the manager accordingly decreases the profit-maximizing price—that all

43 See Part II for some references on mergers among profit-maximizing firms.
consumers buy the product. For $\theta < 1/2$, this even means that additional quality $q = 0$, unlike the duopoly case where $q > 0$ for all $\theta > 0$. To make the monopoly result comparable with the duopoly case, I also calculate the corresponding welfare result in the appendix.

By comparing welfare levels, I find the following key result of this paper. A monopolistic consumer-dominated nonprofit can create higher total welfare than competing consumer-dominated nonprofits.

This result shows that mergers between consumer-dominated nonprofits need not be a bad thing, as they can increase welfare and do not unambiguously decrease it. Note that the case where such a merger decreases welfare also exists, related to the result of Philipson and Posner. The latter mechanism is not the focus of this paper, though.

What is the intuition of this key result? To better understand it, I plotted equilibrium quality and price levels for a numerical example in Figure 1. The left panel illustrates for this case that competing consumer-dominated nonprofits produce higher quality than a monopolist: $q_{NN} > q_N$ (for the corner solution $\theta = 1$, $q_{NN} = q_N$). This is intuitive because the monopolistic manager maximizes profits, which implies that he produces less quality for a given market price. Competitive nonprofits, in contrast, face Bertrand price competition and sell for marginal cost. Therefore, they can afford to produce higher quality for a given price.

Now it is enlightening to compare quality levels produced in the market with the quality preferred by the social planner, which is also displayed in the left panel of Figure 1. In the example, q_{SP} is strictly lower than both q_{NN} and q_N. Due to the fact that $q_{NN} > q_N$, however, the social planner’s quality is closer to the monopolistic quality than to the duopoly quality for all $\theta \in [0.806, 1]$. Rephrased, the quality levels chosen in duopoly and monopoly are both inefficiently high in the figure but, under monopoly, the overproduction of quality is less intense.

These quality ratios translate into equilibrium prices. The right panel of Figure 1 illustrates, for the same numerical example, that the price level under duopoly is strictly higher than the price level under monopoly: $p_{NN} > p_N$. For the entire support of $\theta \in [0.806, 1]$, the difference between the duopoly price and the social planner’s price, $|p_{NN} - p_{SP}|$, is larger than the difference between the monopoly price and the social planner’s price, $|p_N - p_{SP}|$.

In a nutshell, if two consumer-dominated nonprofits merge to monopoly, quality decreases and the price-to-quality ratio increases. However, there are cases where both the quality level and the price level under competition are excessive when compared with the social planner’s preferred levels. A merger reduces the absolute quality and price levels and brings them more in line with the levels preferred by the social planner. In net welfare terms,

44 Philipson & Posner, supra note 7.
this reduction of excessive quality can outweigh the loss created by monop-
opoly pricing of the manager.

In the numerical example illustrated in Figure 1, the positive effect of a
merger on welfare occurs because the basic utility from consumption is
high, \(b \geq 1/12 \), such that all consumers buy the product in the duopoly
case. High levels of regulated basic utility (or minimum quality) can be
found in the hospital sector, for instance. If the pivotal owners’ preference
for quality, \(\theta \), is also high, quality and price are driven up such that, in
the monopoly case, demand becomes elastic. If within this range (\(\theta \geq 0.806 \), in
the example), \(\theta \) is reduced, the parallel reduction of quality and price allows
more consumers to buy the good, which increases welfare. The same
reduction of \(\theta \) in the duopoly case does not have such a positive effect on
demand, though, because the market is already covered. This prevents
welfare in the duopoly case to increase as much as in the monopoly case.

V. DISCUSSION

A. Separation of Ownership and Control

Why introduce a manager to carry out day-to-day business and to decide \(p \)?
Why do the owners not determine both \(q \) and \(p \) themselves? Let us assume,
in contrast to the above model, that the pivotal consumer-owner of a non-
profit can decide \(q \) and \(p \) together. He maximizes \(u(p, b, q, \theta) \) over \(q, p \) such
that \(\pi \geq 0 \). As he does not benefit from positive profits, \(\pi = 0 \), which
implies choosing \(p = q^2 \). The remaining reduced maximization problem is
similar to the one analyzed above in the duopoly competition case. Hence,
the consumer-owner chooses the same quality and price levels as found
there. These choices are independent of the degree of competition, though.
In other words, such a mighty pivotal owner acts in the same way not
regarding the competitive environment he operates in. Mergers have no
effect on his behavior.
In contrast, empirical studies, such as that by Malani, Philipson, and David,45 show that the degree of competition indeed influences behavior in nonprofits. Separation of ownership and control is a ubiquitous fact in all types of organizations in practice. This is true, in particular, in industries where very specialized knowledge of the production technology (reflecting owners’ decisions on q) is needed in line with specialized business knowledge (reflecting the manager’s decision on p in my model)—for instance, in healthcare, where experts in both disciplines, management and medical science, are rare.

Despite the business ignorance of owners, they set q in my model and know the reaction function of the manager and, hence, indirectly also determine $p(q)$. More realistically, this could be interpreted in a way such that owners cannot foresee $p(q)$ exactly but believe in some distribution function of possible reaction functions of the manager. $p(q)$ would then be the expectation of that distribution function.

\textbf{B. More than Two Suppliers}

The main goal of my model is to show that the objectives of nonprofit owners can actually affect the welfare result of a merger. For this end, modeling a merger from duopoly to monopoly is sufficient, as it shows the main mechanism in a simple way. To characterize conditions that better predict which real mergers may be welfare-improving, a richer model is required. This is a fruitful area of future research. The intuition of this paper’s main result, however, can be generalized to the extent that the market power of the manager increases in the course of a merger. Then, the manager can increase the price, which leads to a decrease of equilibrium quality. Overproduction of quality is diminished, which can lead to a welfare gain along the lines identified above.

\textbf{VI. CONCLUSION}

This paper has analyzed the welfare effects of mergers among so-called consumer-dominated nonprofits. Its main question, whether mergers among nonprofits should be treated differently by antitrust law from mergers among for-profit firms, has been studied by constructing a model of duopoly competition related to Shaked and Sutton.46 After imposing a merger to monopoly between two nonprofits, I have shown that, holding all else equal, welfare can either decrease or increase after a merger. Consequently, the organizational form of the merging parties and the objectives of their pivotal owners can have a critical effect on welfare. This finding is relevant for antitrust law.

45 Malani, Philipson & David, \textit{supra} note 3.

46 Shaked & Sutton, \textit{supra} note 10.
This result complements the conclusion of Philipson and Posner. The differences are due to several assumptions in my paper, the inclusion of which Philipson and Posner call for: (1) Philipson and Posner agree that firm governance should be addressed and point to the fact that decision-makers in nonprofits “may have [more] trouble agreeing on the right course of action for the nonprofit” as for-profit firms. (2) They speculate, based on the insight that nonprofit governance is important, that nonprofits “are more likely to be disciplined by output markets rather than by input markets or corporate control.” (3) “Other utility functions should be considered in future work.”

This paper addresses all three points: (1) It builds on a governance-based model of nonprofits that emphasizes the role of owners’ objectives for their behavior on output markets. The assumption of heterogeneous owner preferences and the concept of the pivotal owner relate to the lack of goal alignment in many nonprofits. (2) This paper shows that nonprofits can indeed be disciplined by competition in output markets—it only disagrees that this ability is welfare-increasing in general. (3) This paper analyzes the effects of a nonprofit objective function that differs from Philipson and Posner’s, namely, to maximize the pivotal owner’s own consumption utility from vertically differentiated goods.

The next steps in improving our understanding of mergers among nonprofits and nonprofit behavior in general are twofold. First, to better characterize the conditions that predict which mergers may be welfare-improving, a richer model that incorporates variables that are easy to observe empirically is required. In particular, is it possible to map a certain type of nonprofit—for example, a consumer-dominated nonprofit—to an existing legal form of organization? Second, the model, in particular, the idea of the existence of different types of nonprofits, awaits empirical testing. Can the current empirical controversy about the effects of nonprofits on price, output, quality, and other variables of interest be explained if data sets are split according to the type of nonprofit?

APPENDIX A: THE SOCIAL PLANNER’S DECISIONS

Solving the social planner’s maximization problem (4) leads to the following result.

47 Philipson & Posner, supra note 7.
48 See id. at 16–17.
49 Id.
50 Id.
51 Id.
52 See Prüber, supra note 9.
53 Philipson & Posner, supra note 7.
Result A.1 (Social planner’s preferred quality and price). (i) Consider \(b \geq 1/16 \): the social planner chooses a quality level of \(q_{SP} = 1/4 \) and sells for \(p_{SP} = 1/16 \) to \(s = 1 \) consumer. This generates total welfare of \(W_{SP} = b + 1/16 \). (ii) Consider \(b < 1/16 \): the social planner produces a quality level of \(q_{SP} = (1 + \sqrt{1 - 12b})/6 \) and sets a price of \(p_{SP} = (1 + \sqrt{1 - 12b})^2/36 \). A share \(s = 2/(3(2 - \sqrt{1 - 12b})) \) of consumers buys the product, that is, \(s \in [2/(3, 1)] \) for \(b \in [(0, 1)/16] \). Welfare is \(W_{FB} = (1 + 12b + \sqrt{1 - 12b})^2/(27(1 + \sqrt{1 - 12b})) \).

Proof. (i) The second line of equation (4) has a straightforward solution, \(q_{SP} = 1/4 \), which is valid if \(b \geq q^2 = 1/16 \) and leads to \(p_{SP} = 1/16 \), \(s = 1 \), and a welfare of \(W = b + 1/16 \). (ii) The only quality level that is nonnegative, generates positive demand, and is a maximum is \(q = (1 + \sqrt{1 - 12b})/6 \). Hence, there is a welfare maximum, which exists \(\forall b \leq 1/12 \). As the case in equation (4) requires a stronger condition, \(b < 1/16 \) (see above), the latter is always fulfilled. Hence, \(q_{SP} = (1 + \sqrt{1 - 12b})/6 \) generates \(p_{SP} = q^2 = ((1 + \sqrt{1 - 12b})^2)/36 \), and the output of \(s = 2/(3(2 - \sqrt{1 - 12b})) \). Welfare is \((27(1 + \sqrt{1 - 12b})) (27(1 + \sqrt{1 - 12b})) \). Q.E.D.

Note that both cases (i) and (ii) converge at \(b = 1/16 \), where \(q_{SP} = 1/4 \), \(p_{SP} = 1/16 \), \(s = 1 \), and \(W_{SP} = 1/8 \).

APPENDIX B. DUOPOLY COMPETITION

The central goal of this section is to characterize the subgame-perfect equilibrium in duopoly competition, which is stated in Result B.3. This main positive result is complemented by the normative result on welfare, Result B.4. It is preceded by an analysis of managerial pricing behavior, given that quality levels are fixed (Result B.1), and an analysis of owners’ quality choices, knowing how managers will react to these choices (Result B.2).

Solving the maximization problem of organization \(j \)'s manager, equation (10) shows:

Result B.1 (Price Nash equilibria). (i) In \(t = 2 \), all Nash equilibria in pure strategies that lead to positive market shares for both producers (\(s_A, s_B > 0 \)) and where \(q_A \neq q_B \) lead to positive price markups (\(M_A, M_B > 0 \)). (ii) The only pure strategy Nash equilibrium with a \((q_A, q_B) \)-combination that leads to positive market shares and to zero markups is characterized by \(q_A = q_B \).

Proof. Define:

\[
M_A^{elastic} = \frac{(q_A - q_B)(b + 2q_A(1 - q_A) - q_Aq_B)}{4q_A - q_B}, \tag{B.1}
\]
Solving equations (B.1) and (B.2) for zero yields that

\[M_B^{\text{elastic}} = \frac{(q_A - q_B)(2b + q_B(1 - q_B) + q_Aq_B)}{4q_A - q_B}, \quad (B.2) \]

\[M_A^{\text{covered}} = \frac{1}{3}(q_A - q_B)(2 - q_A - q_B), \quad (B.3) \]

\[M_B^{\text{covered}} = \frac{1}{3}(q_A + q_A^2 - q_B - q_B^2). \quad (B.4) \]

After maximizing equation (10), these definitions allow to express Nash equilibrium prices in \(t = 2 \) as:

\[p_A^{\text{elastic}} = q_A^2 + M_A^{\text{elastic}}, \quad p_B^{\text{elastic}} = q_B^2 + M_B^{\text{elastic}} \quad \text{if } b < p_B < b + q_B, \quad (B.5) \]

\[p_A^{\text{covered}} = q_A^2 + M_A^{\text{covered}}, \quad p_B^{\text{covered}} = q_B^2 + M_B^{\text{covered}} \quad \text{if } p_B \leq b, \quad (B.6) \]

where \(M_j \) is the price markup on the marginal cost of organization \(j \) in equilibrium. Substituting these prices into equations (7) and (8) yields equilibrium output:

\[s_A^{\text{covered}} = \frac{1}{3}(2 - q_A - q_B); \quad s_B^{\text{covered}} = \frac{1}{3}(1 + q_A + q_B) \quad (B.7) \]

in the covered market case. In the elastic case, the producers sell:

\[s_A^{\text{elastic}} = \frac{b + q_A(2(1 - q_A) - q_B)}{4q_A - q_B}; \quad s_B^{\text{elastic}} = \frac{q_A(2b + q_B(1 - q_B) + q_Aq_B)}{q_B(4q_A - q_B)}. \quad (B.8) \]

To prepare subsequent results, I have to check when the price markups are equal to zero. First, I define:

\[q_A^- = \frac{1}{4} \left(2 - \sqrt{8b + (q_B - 2)^2} - q_B \right); \quad q_A^+ = \frac{1}{4} \left(2 + \sqrt{8b + (q_B - 2)^2} - q_B \right); \]

\[q_B^- = \frac{1}{2} \left(1 + q_A - \sqrt{8b + (1 + q_A)^2} \right); \quad q_B^+ = \frac{1}{2} \left(1 + q_A + \sqrt{8b + (1 + q_A)^2} \right); \]

\[q_A^{+, \text{covered}} = 2 - q_B; \quad q_B^{+, \text{covered}} = -(1 + q_A). \]

Solving equations (B.1) and (B.2) for zero yields that \(M_A^{\text{elastic}} = 0 \), for \(q_A = \{q_B, q_A^-, q_A^+\} \); \(M_B^{\text{elastic}} = 0 \), for \(q_B = \{q_A, q_B^-, q_B^+\} \); \(M_A^{\text{covered}} = 0 \), for \(q_A = \{q_B, q_A^{+, \text{covered}}\} \); \(M_B^{\text{covered}} = 0 \), for \(q_B = \{q_A, q_B^{+, \text{covered}}\} \). Substituting these values into the individual demand functions in equations (B.7) or (B.8), respectively, and assuming \(q_A, q_B > 0 \) yields:

\[s_A^{\text{elastic}}(q_A = q_B) = \frac{2}{3} + \frac{b}{3q_B} - q_B; \quad s_B^{\text{elastic}}(q_A = q_B) = \frac{1}{3} + \frac{2b}{3q_A}; \quad (B.9) \]

\[s_A^{\text{covered}}(q_A = q_B) = \frac{2}{3}(1 - q_B); \quad s_B^{\text{covered}}(q_A = q_B) = \frac{1}{3}(1 + 2q_A). \quad (B.10) \]
Furthermore, we obtain:

\[
s_{A}^{\text{elastic}}(q_A = q_A^+) = s_{A}^{\text{elastic}}(q_A = q_A^-) = s_{A}^{\text{covered}}(q_A = q_A^{\text{covered}}) = 0;
\]

\[
s_{A}^{\text{elastic}}(q_A^- < q_A < q_A^+) > 0;
\]

\[
s_{A}^{\text{covered}}(q_A < q_A^{+\text{covered}}) > 0;
\]

\[
s_{B}^{\text{elastic}}(q_B = q_B^-) = s_{B}^{\text{elastic}}(q_B = q_B^+) = s_{B}^{\text{covered}}(q_B = q_B^{\text{covered}}) = 0;
\]

\[
s_{B}^{\text{elastic}}(q_B^- < q_B < q_B^+) > 0;
\]

\[
s_{B}^{\text{covered}}(q_B < q_B^{+\text{covered}}) > 0.
\]

Considering only cases where the producers sell positive quantities in the market, this result implies that the price equals marginal cost if and only if \(q_A = q_B\). This is intuitive because only then the two products are not differentiated and price competition in \(t = 2\) resembles the classical Bertrand game with homogeneous goods.

In \(t = 1\), what is the standpoint of owners on a price equal to marginal cost, \(q_j^2\), when compared with positive price markups? All else equal, consumer-owners prefer a markup of zero, because a positive markup increases the price they must pay as consumers in \(t = 3\) but does not give them additional utility from increased quality. Due to the nondistribution constraint, they would also not benefit from the producer surplus that would be generated through positive markups. Given that the pivotal owners of A and B could coordinate, they would first agree to set the same level of quality, \(q_A = q_B\), thereby making sure the markup is zero. Then, they would jointly choose the quality level that maximizes their consumption utility, assuming the price markup is zero. They can fix the same quality level without explicit coordination. Expecting that the other pivotal owner sets this jointly optimal quality, each owner cannot do better if he chooses a different quality because it would lead to positive markups. This insight is summarized in the following result.

Result B.2 (Quality Nash equilibrium). In \(t = 1\), in duopoly competition between symmetric nonprofits, there exists no subgame-perfect equilibrium in pure strategies in which \(q_A = q_B\). In equilibrium, \(q_A = q_B\).

Proof. Substituting \(p_j = q_j^2 + M_j(q_j, q_{k\neq j})\) for the price variable in the objective function of owners yields that the pivotal consumer-owner of nonprofit \(j\) maximizes \(u_j = b + \theta q_j - (q_j^2 + M_j(q_j, q_{k\neq j}))\) with respect to \(q_j\). Obviously, the partial derivative:

\[
\frac{\partial u_j}{\partial M_j(q_j, q_{k\neq j})} < 0.
\]
Hence, c.p. any $M_j(q_{p_j} q_{k \neq j}) > 0$ decreases the pivotal owner's utility. Now define $q_{k \neq j}$ as the $q_{k \neq j}$ that solves $\arg \max \{b + \theta q_{k \neq j} - (q_{k \neq j}^2 + 0)\}$, and note that $q_{k \neq j}$ depends on a markup of $M_k = 0$. Then, by the definition of $q_{k \neq j}$, $[equation (B.11)]$, and Result B.1, the unique q_i that solves $\arg \max \{b + \theta q_i - (q_i^2 + M_i(q_i, q_{k \neq j}))\}$, is $q_i = q_{k \neq j}^2 = q_{k \neq j}^*$. Q.E.D.

Result B.2 states that the only way for nonprofit owners to keep their managers from setting a price above marginal cost is to determine the same level of quality in $t = 1$ and, thereby, to let the managers face Bertrand competition with homogeneous products in $t = 2$. It follows from Results B.1 and B.2 that subgame-perfect equilibrium prices in duopoly competition are:

$$p_A^* = p_B^* = q_A^2 = q_B^2 \quad (B.12)$$

and that both producers share the market equally:

$$s_A^* = s_B^* = \frac{1}{2} \quad \text{if } q_B^2 \leq b \quad (B.13)$$

$$s_A^* = s_B^* = \frac{1 - \theta}{2} = \frac{q_B - q_B^2 + b}{2q_B} \quad \text{if } b < q_B^2 < b + q_B, \quad (B.14)$$

$$s_A^* = s_B^* = 0 \quad \text{if } b + q_B \leq q_B^2. \quad (B.15)$$

These preliminaries allow me to characterize the unique subgame-perfect equilibrium in the following result.

Result B.3 (Subgame-perfect equilibrium when nonprofits compete). Depending on the preferences of the pivotal owners, θ, consumer-dominated nonprofits produce $q_A^\theta = q_B^\theta = \theta/2 = q_{NN}$. The managers set $p_A^\theta = p_B^\theta = \theta^2/4 = p_{NN}$. If $\theta \leq 2 \sqrt{b}$, the market is covered: $s_A^\theta = s_B^\theta = 1/2$. If $\theta > 2 \sqrt{b}$, demand is elastic: $s_A^\theta = s_B^\theta = (1/2) + (b/\theta) - (\theta/4)$.

Proof. Substituting equation (B.12) in equation (1) and maximizing with respect to q_j yields $q_A = q_B = \theta/2 = q_{NN}$. Substituting q_{NN} in equation (B.12) gives $p_A = p_B = \theta^2/4 = p_{NN}$. Substituting q_{NN} in equations (B.13)–(B.15) shows that the market is covered for $\theta \leq 2 \sqrt{b}$, that it breaks down for $\theta \geq 1 + \sqrt{1 + 4b}$, and that in the elastic demand case the marginal buyer is located at $(\theta/2) - (2b/\theta)$, which implies an output per producer of $s_A = s_B = (1/2) + (b/\theta) - (\theta/4)$. Due to the fact that the upper bound on θ is 1, by assumption, which is strictly smaller than $1 + \sqrt{1 + 4b}$, the market breakdown case is never reached in this scenario. Q.E.D.

The welfare result corresponding to Result B.3 is:
Result B.4 (Welfare under duopoly). Producer surplus is zero. Consumer surplus and welfare are:

\[
CS = W = b + \frac{\theta - \theta^2}{4} \quad \text{if } \theta \leq 2\sqrt{b}, \quad \text{(B.16)}
\]

\[
CS = W = \frac{(-4b + (\theta - 2)^2)}{16\theta} \quad \text{if } \theta > 2\sqrt{b}. \quad \text{(B.17)}
\]

Proof. This result follows from Result B.3. Because of marginal cost pricing, producer surplus is 0. Thus, consumer surplus equals total welfare, which is \(b + (1/2q_{NN}) - q_{NN}^2 = b + (\theta - \theta^2)/4\) in the covered market case. If demand is elastic, welfare is:

\[
\int_0^1 (b + \frac{1+(\theta/2)-(2b/\theta)}{2}q_{NN} - q_{NN}^2)d\theta = \frac{(-4b+(\theta-2)^2)}{16\theta}. \quad \text{Q.E.D.}
\]

APPENDIX C. MONOPOLISTIC NONPROFIT

Consumer behavior in \(t = 3\) is independent of the market structure. Hence, equations (7)–(9) imply the demand for the single product, \(s\), where \(s = s_A + s_B\). If demand is elastic, \(s = (b + q - p)/q\). If the market is covered, \(s = 1\). If the market breaks down, \(s = 0\).

In \(t = 2\), the manager maximizes profits as in equation (10). Due to the absence of competition, he will set a price depending on quality, the analog of equation (B.12), as:

\[
p^* = \frac{b + q + q^2}{2}, \quad \text{(C.1)}
\]

which leads to demand of:

\[
s = 1 \quad \text{if } q \leq \frac{\sqrt{1 + 4b} - 1}{2}, \quad \text{(C.2)}
\]

\[
s = \frac{b + q - q^2}{2q} \quad \text{if } \frac{\sqrt{1 + 4b} - 1}{2} < q < \frac{\sqrt{1 + 4b} + 1}{2}, \quad \text{(C.3)}
\]

\[
s = 0 \quad \text{if } q \geq \frac{\sqrt{1 + 4b} + 1}{2}. \quad \text{(C.4)}
\]

The subgame-perfect equilibrium is characterized in the following result.
Result C.1 (Subgame-perfect equilibrium in monopoly). A monopolistic consumer-dominated nonprofit sets quality and price such that in equilibrium:

\[q_N = 0, p_N = b, s = 1 \quad \text{for } \theta \leq \frac{1}{2}, \quad (C.5) \]

\[q_N = \theta - \frac{1}{2}, p_N = b, s = 1 \quad \text{for } \frac{1}{2} < \theta \leq \frac{\sqrt{1 + 4b}}{2}, \quad (C.6) \]

\[q_N = \theta - \frac{1}{2}, p_N = \frac{4\theta^2 + 4b - 1}{8}, s = \frac{3 - 2\theta}{4} + \frac{b}{2\theta - 1} \quad \text{for } \theta > \frac{\sqrt{1 + 4b}}{2}. \quad (C.7) \]

Proof. Substituting equation (C.1) in equation (1) gives \(q = \theta - 1/2 \). As \(q \) cannot be negative, this holds only for \(\theta > 1/2 \). For \(\theta \leq 1/2 \), \(q = 0 \), which leads to profit-maximizing pricing of \(p = b \) and, subsequently, \(s = 1 \). Substituting \(q = \theta - 1/2 \) in equation (C.1) yields a monopoly price of \(p = (4\theta^2 + 4b - 1)/8 \) as long as demand is elastic, which is given for \(\theta > \sqrt{1 + 4b}/2 \). In this case, demand equals \(s = (q - p + b)/q = (3 - 2\theta)/4 + b/(2\theta - 1) \). In the intermediate case, where \(1/2 < \theta \leq \sqrt{1 + 4b}/2 \), demand is inelastic. Thus, \(s = 1 \), \(p = b \), and \(q = \theta - 1/2 \). Q.E.D.

The impact of the merger on total welfare is stated in the following result.

Result C.2 (Welfare in monopoly). Welfare is given by:

\[W = b \quad \text{for } \theta \leq \frac{1}{2}, \quad (C.8) \]

\[W = b + \frac{(1 - \theta)(2\theta - 1)}{2} \quad \text{for } \frac{1}{2} < \theta \leq \frac{\sqrt{1 + 4b}}{2}, \quad (C.9) \]

\[W = \frac{3(3 - 4b + 4(\theta - 2)\theta)^2}{64(2\theta - 1)} \quad \text{for } \theta > \frac{\sqrt{1 + 4b}}{2}. \quad (C.10) \]

Proof. This proof builds on Result C.1. If \(\theta \leq 1/2 \), consumer surplus is \(1(b + 0 - b) = 0 \), whereas producer surplus is \(s(p - q^2) = 1(b - 0) = b \), which sums to the welfare of \(b \). If \(1/2 < \theta \leq \sqrt{1 + 4b}/2 \), producer surplus is \(s(p - q^2) = 1(b - (\theta - 1/2)^2) = b + \theta - \theta^2 - 1/4 \). Consumer surplus is \(1(b + (1/2)q - p) = b + 1/2(\theta - 1/2) - b = (2\theta - 1)/4 \), which sums to the welfare of \(b + (1 - \theta)(2\theta - 1)/2 \). If \(\theta > \sqrt{1 + 4b}/2 \), then producer surplus
equals \(\frac{3}{4} b + 4 \theta (2 \theta - 1) \), consumer surplus equals \(\frac{3}{4} b + 4 \theta (2 \theta - 1) \), which sums to the welfare of \(\frac{3}{4} b + 4 \theta (2 \theta - 1) \). Q.E.D.

Result C.2 allows for a comparison of welfare under duopoly and monopoly, which is stated in the following result.

Result C.3 (Merger welfare effects). A monopolistic consumer-dominated nonprofit can create higher total welfare than competing consumer-dominated nonprofits.

Proof. Consider the case where \(b \geq 1/12 \). Then \(1/2 < \sqrt{1 + 4b}/2 \leq 2b \). For \(\sqrt{1 + 4b}/2 < \theta \leq 2b \), welfare under duopoly is given by equation (B.16) and welfare under monopoly by equation (C.10). Consider \(b = 0.4 \), which fulfills the requirement that \(b \geq 1/12 \). Inserting \(b = 0.4 \) in the boundaries, \(\sqrt{1 + 4b}/2 \) and \(2b \), shows that eligible \(\theta \)-values lie between 0.806 and 1.265. As \(\theta \) is only defined between zero and one, the relevant range to be considered is \(\theta \in [0.806, 1] \). For a value of \(\theta = 0.815 \), for instance, welfare under monopoly exceeds welfare under duopoly:

\[
(C.10) - (B.16) \bigg|_{\theta=0.815} = 0.014 > 0. \quad \text{Q.E.D.}
\]

Figure 2 illustrates this example.