Pollution Control and the Dynamics of Firm
Kort, P.M.

Publication date:
1993

Citation for published version (APA):
Pollution Control and the Dynamics of the Firm: the Effects of Market Based Instruments on Optimal Firm Investments

Peter M. Kort

Econometrics Department and CentER, Tilburg University, 5000 LE Tilburg, The Netherlands
E-Mail: Kort@KUB.NL

This contribution belongs to a category of papers that attempts to determine the effects of environmental regulation on the growth of an individual firm. It extends the existing literature in at least two ways. First, our pollution function explicitly deals with the fact that it is more difficult to reduce pollution by abatement activities when pollution is already low. Second, according to our knowledge it is for the first time that marketable pollution permits are incorporated in a dynamic model of the firm.

In the paper we establish the effects of a pollution tax and marketable permits on the behavior of the firm. For the tax model as well as the marketable permits model we prove that the equilibrium is stable and approached monotonically, and we derive formulas for optimal investment policies. Furthermore, we carry out a phase plane analysis for the pollution tax case, and, finally, a condition is obtained under which long run firm behavior is the same when either a tax or marketable permits are imposed.
1 Introduction

One of the most important problems of firm behavior in practice these days is how to react on environmental regulation. The government has several policy instruments at its disposal to give the firm an incentive to reduce pollution.

In case environmental problems develop smoothly and gradually it is well known that market-based approaches, like taxes and marketable permits, have important efficiency advantages over pollution standards, thus restricting pollution emissions directly (see e.g. Baumol and Oates (1971)). But, as argued by Hahn and Stavins (1991), in practice political and technological constraints can occur that lead to a poor performance of these market-based instruments. Therefore, it is important to recognize that the nature of individual environmental problems can dramatically affect the choice of preferred policy instruments. Thus, for example, for highly localized pollution problems with threshold damage functions (e.g. Dasgupta (1982), Figure 8.3), source-specific standards may be appropriate, whereas for pollution problems characterized by more uniform mixing over larger geographical areas, market-based approaches may be particularly desirable. This leads to the conclusion that the ideal policy package contains a mixture of instruments, with taxes, marketable permits and standards each used in certain circumstances to regulate the sources of environmental damage (Baumol and Oates (1988), p. 190).

Hence, in determining a theoretical framework for establishing the effects of environmental regulation on the firm's investment policy, each of the above mentioned policy instruments should be addressed. Contributions in this area include Helfand (1991, standards), Kort, Van Loon and Luptacik (1991, tax) and Xepapadeas (1992, tax + standards).

The aim of this paper is to establish the optimal dynamic behavior of a firm facing either imposition of a pollution tax or a market for pollution permits. Here the specification of the pollution function is improved compared to models in, e.g., Kort, Van Loon and Luptacik (1991) and Xepapadeas (1992). In these contributions a given abatement expenditure leads to a given pollution reduction, which is thus irrespective of the amount of pollution caused by the production process. This suggests that pollution can be driven to zero or even become negative, and, indeed, in these models a constraint occurs to prevent that pollution becomes negative. In our formulation we adopt the more realistic assumption that marginal costs of abatement increase sharply as the level of pollution shrinks, which implies that driving pollution to zero is very expensive if not impossible. A dynamic model of the firm in which the firm faces a pollution tax is developed in
Section 2. In Section 3 we solve this model by performing a stability analysis, deriving net present value formulas and developing dynamic adjustment paths. In Section 4 we consider a firm that has to buy marketable pollution permits in order to be allowed to pollute the environment, and we compare the results with the tax case. The paper is concluded in Section 5.

2 Pollution tax model

Consider a firm that has the possibility to invest in two different sorts of capital goods. One is productive but also causes pollution as an inevitable byproduct. The other one is non-productive but cleans pollution. The firm’s pollution function is given by $E(K_1, K_2)$ which satisfies:

$$E(K_1, K_2) > 0 \text{ for all } K_1 > 0 \text{ and } K_2 \geq 0; \ E(0, K_2) = 0$$ \hfill (1.1)

$$E_{K_1}(K_1, K_2) > 0; \ E_{K_1K_1}(K_1, K_2) > 0$$ \hfill (1.2)

$$E_{K_2}(K_1, K_2) < 0 \text{ for all } K_1 > 0; \ E_{K_2K_2}(K_1, K_2) > 0 \text{ for all } K_1 > 0$$ \hfill (1.3)

$$E_{K_1K_2}(K_1, K_2) = E_{K_2K_1}(K_1, K_2) < 0$$ \hfill (1.4)

$$E_{K_1K_1}(K_1, K_2)E_{K_2K_2}(K_1, K_2) > [E_{K_1K_2}(K_1, K_2)]^2$$ \hfill (1.5)

in which:
- $E(K_1, K_2)$: flow of pollution generated by the firm, being a function of K_1 and K_2\(^1\)
- $K_1 = K_1(t)$: stock of productive capital goods at time t
- $K_2 = K_2(t)$: stock of abatement capital goods at time t

(1.1) implies that pollution output is positive as long as the productive capital stock is positive. Therefore, pollution is never non-existent when the firm produces.

\(^1\)Stock characteristics of environmental pollution are not considered here. This is because according to Xepapadeas (1992) stock effects are particularly important in a model where the objective is to maximize some welfare indicator and not in a model where private profits are maximized. The pollution flow generated by the firm contributes to the total pollution stock of the whole economy.
(1.2) states that pollution increases in a convex way with increasing productive capital stock, for a given level of abatement capital stock.

(1.3) means that pollution output is smaller the larger the current level of abatement capital stock, for a given positive stock of productive capital. (1.3) also implies that we have diminishing returns to abatement capital stock.

(1.4) states that the increase of pollution, due to an extra unit of productive capital stock, is smaller the larger the level of abatement capital stock. Alternatively, the decrease in pollution output, due to an extra unit of abatement capital stock, is larger the larger the current productive capital stock.

Because \(E_{K_2K_1} < 0 \) and \(E_{K_2K_2} > 0 \), our formulation has the realistic property that more abatement investments are required to reduce pollution with some fixed amount as the level of pollution shrinks.

In Xepapadeas (1992) and in Kort, Van Loon and Luptacik (1991) the pollution function is separable in \(K_1 \) and \(K_2 \). This implies that a given amount of abatement capital stock leads to a given reduction of pollution, irrespective of the current level of pollution, and also that pollution can be zero. In our formulation we got rid of these unrealistic features.

Finally, (1.2), (1.3) and (1.5) imply that function \(E \) is strictly convex in \((K_1, K_2)\).

According to Jorgenson and Wilcoxen (1990, p. 330) the most important response of a firm to environmental regulations is investment in costly new equipment for pollution abatement. Therefore, by introducing abatement capital stock as a state variable we assume that the firm can build up abatement capital. Both capital goods evolve according to the standard capital accumulation dynamics:

\[
\dot{K}_1 = I_1 - a_1 K_1, \quad K_1(0) > 0
\]

\[
\dot{K}_2 = I_2 - a_2 K_2, \quad K_2(0) > 0
\]

in which:

\(I_1 = I_1(t) \) : rate of investment in productive capital goods at time \(t \)

\(I_2 = I_2(t) \) : rate of investment in abatement capital goods at time \(t \)

\(a_1 \) : depreciation rate of the productive capital goods

\(a_2 \) : depreciation rate of the abatement capital goods

(\(a_1 > 0 \) and constant)

(\(a_2 > 0 \) and constant)
Gross earnings of the firm are given by the instantaneous revenue function \(S = S(K_1) \). Assume that \(S \) is twice continuously differentiable, \(S(K_1) > 0 \) for \(K_1 > 0 \), \(S'(K_1) > 0 \), \(S''(K_1) < 0 \), \(S(0) = 0 \). [Function \(S(K_1) \) is defined as revenue after maximization with respect to variable inputs, e.g. labor].

Investment is costly. Let, for \(i = 1, 2 \), \(C_i(I_i) \) be the cost of investment with \(C_i \) a convex and increasing function, \(C'_i(I_i) > 0 \), \(C''_i(I_i) > 0 \), \(C(0) = 0 \).

The objective of the firm is to maximize the net cash flow stream:

\[
\text{maximize: } \int_0^\infty [S(K_1) - C_1(I_1) - C_2(I_2) - \tau E(K_1, K_2)] \exp(-rt) dt
\]

in which:

- \(r \): discount rate (\(r > 0 \) and constant)
- \(\tau \): pollution tax rate (\(\tau > 0 \) and constant)

As argued by Pindyck (1991) investment expenditures are largely irreversible; that is, they are mostly sunk costs that cannot be recovered. This comes from the fact that usually capital is firm or industry specific, that is, it cannot be used productively by a different firm or in a different industry. To include irreversibility of investment in our model we add the following two non-negativity restrictions:

\[
I_1 \geq 0 \quad (5)
\]

\[
I_2 \geq 0 \quad (6)
\]

The decision problem of the firm is to determine an investment path. \(\{I_1(t), I_2(t)\} \) over an infinite planning period \([0, \infty)\), such that the objective functional in (4) is maximal, subject to the constraints (2), (3), (5) and (6).

3 Solution

To obtain the optimality conditions for the optimal control problem described at the end of the previous section we use Pontryagin’s maximum principle (see e.g. Feichtinger and Hartl (1986)). The current value Hamiltonian and Lagrangian for this problem are:
\[H = S(K_1) - C_1(I_1) - C_2(I_2) - \tau E(K_1, K_2) + \lambda_1(I_1 - a_1 K_1) + \lambda_2(I_2 - a_2 K_2) \] (7)

\[L = H + \eta_1 I_1 + \eta_2 I_2 \] (8)

in which:
- \(\lambda_i = \lambda_i(t) \): co-state variable belonging to \(K_i \) at time \(t \); \(i = 1, 2 \)
- \(\eta_i = \eta_i(t) \): dynamic Lagrange multiplier belonging to the constraint \(I_i \geq 0 \) at time \(t \); \(i = 1, 2 \)

The necessary optimality conditions are:

\[-C'_1(I_1) + \lambda_1 + \eta_1 = 0\] (9)

\[-C'_2(I_2) + \lambda_2 + \eta_2 = 0\] (10)

\[\dot{\lambda}_1 = (r + a_1)\lambda_1 - S'(K_1) + \tau E_{K_1}(K_1, K_2) \] (11)

\[\dot{\lambda}_2 = (r + a_2)\lambda_2 + \tau E_{K_2}(K_1, K_2) \] (12)

\[\eta_1 \geq 0, \quad \eta_1 I_1 = 0 \] (13)

\[\eta_2 \geq 0, \quad \eta_2 I_2 = 0 \] (14)

If furthermore the transversality conditions

\[\lim_{t \to \infty} \exp(-rt)\lambda_i(t)[\hat{K}_i(t) - K_i(t)] \geq 0; \quad i = 1, 2 \] (15)

hold for every feasible solution \((\hat{K}_1, \hat{K}_2)\), then (9)-(14) are also sufficient for optimality since the maximized Hamiltonian is concave in \((K_1, K_2)\).
3.1 Stability analysis

To get insight into the dynamics of the optimal solution of our model, a stability analysis has to be carried out. By linearizing the non-linear canonical system around the steady state \((K_1^*, K_2^*, \lambda_1^*, \lambda_2^*, I_1^*, I_2^*)\) we obtain the Jacobi matrix evaluated at the equilibrium. An optimal steady state is a solution of:

\[
\begin{align*}
I_1 - a_1 K_1 &= 0 \\
I_a - a_2 K_2 &= 0 \\
(r + a_1)\lambda_1 - S'(K_1) + \tau E_{K_1}(K_1, K_2) &= 0 \\
(r + a_2)\lambda_2 + \tau E_{K_2}(K_1, K_2) &= 0 \\
-C'_1(I_1) + \lambda_1 &= 0 \\
-C'_2(I_2) + \lambda_2 &= 0
\end{align*}
\]

Then the Jacobian of the canonical system evaluated at the equilibrium has the following form:

\[
J = \begin{bmatrix}
-a_1 & 0 & 1/C'_1 & 0 \\
0 & -a_2 & 0 & 1/C'_2 \\
-S'' + \tau E_{K_1K_2} & \tau E_{K_1K_2} & r + a_1 & 0 \\
\tau E_{K_2K_1} & \tau E_{K_2K_2} & 0 & r + a_2
\end{bmatrix}
\] (16)

The determinant of the Jacobian evaluated at the steady state is given by the expression:

\[
\det J = a_1 a_2 (r + a_1)(r + a_2) + \\
+ \frac{a_1(r + a_1)\tau E_{K_1K_2}}{C'_2} + \frac{a_2(r + a_2)(\tau E_{K_1K_1} - S'')}{C'_1} - \frac{\tau S'' E_{K_2K_2}}{C'_1 C'_2} + \\
+ \frac{\tau^2}{C'_1 C'_2} \left(E_{K_1K_1} E_{K_2K_2} - E_{K_1K_2}^2 \right) > 0
\] (17)
According to Feichtinger and Hartl (1986, Theorem 5.4) we have saddle-point stability with monotonic motions if the following conditions are satisfied:

\[K < 0 \]
\[0 < \det J \leq K^2 / 4 \]

in which:

\[
K = \left| \begin{array}{c c c c}
\frac{\partial \dot{K}_1}{\partial K_1} & \frac{\partial \dot{K}_1}{\partial \lambda_1} & \frac{\partial \dot{K}_1}{\partial \lambda_2} & \frac{\partial \dot{K}_1}{\partial \lambda_3} \\
\frac{\partial \dot{K}_2}{\partial K_1} & \frac{\partial \dot{K}_2}{\partial \lambda_1} & \frac{\partial \dot{K}_2}{\partial \lambda_2} & \frac{\partial \dot{K}_2}{\partial \lambda_3} \\
\frac{\partial \dot{\lambda}_1}{\partial K_1} & \frac{\partial \dot{\lambda}_1}{\partial \lambda_1} & \frac{\partial \dot{\lambda}_1}{\partial \lambda_2} & \frac{\partial \dot{\lambda}_1}{\partial \lambda_3} \\
\frac{\partial \dot{\lambda}_2}{\partial K_1} & \frac{\partial \dot{\lambda}_2}{\partial \lambda_1} & \frac{\partial \dot{\lambda}_2}{\partial \lambda_2} & \frac{\partial \dot{\lambda}_2}{\partial \lambda_3}
\end{array} \right| + 2 \left| \begin{array}{c c c c}
\frac{\partial \dot{K}_1}{\partial K_2} & \frac{\partial \dot{K}_1}{\partial \lambda_1} & \frac{\partial \dot{K}_1}{\partial \lambda_2} & \frac{\partial \dot{K}_1}{\partial \lambda_3} \\
\frac{\partial \dot{K}_2}{\partial K_2} & \frac{\partial \dot{K}_2}{\partial \lambda_1} & \frac{\partial \dot{K}_2}{\partial \lambda_2} & \frac{\partial \dot{K}_2}{\partial \lambda_3} \\
\frac{\partial \dot{\lambda}_1}{\partial K_2} & \frac{\partial \dot{\lambda}_1}{\partial \lambda_1} & \frac{\partial \dot{\lambda}_1}{\partial \lambda_2} & \frac{\partial \dot{\lambda}_1}{\partial \lambda_3} \\
\frac{\partial \dot{\lambda}_2}{\partial K_2} & \frac{\partial \dot{\lambda}_2}{\partial \lambda_1} & \frac{\partial \dot{\lambda}_2}{\partial \lambda_2} & \frac{\partial \dot{\lambda}_2}{\partial \lambda_3}
\end{array} \right| \]

Calculating \(K \) leads to:

\[
K = \left[-\frac{\tau E_{K_2 K_2}}{C_2''} - a_2(r + a_2) \right] + \left[-\frac{\tau E_{K_1 K_1} + S''}{C_1''} - a_1(r + a_1) \right] < 0
\]

To determine the sign of \(K^2 / 4 - \det J \) we rewrite \(\det J \) into (cf. Xepapadeas (1992)):

\[
\det J = \left[-\frac{\tau E_{K_2 K_2}}{C_2''} - a_2(r + a_2) \right] \left[-\frac{\tau E_{K_1 K_1} + S''}{C_1''} - a_1(r + a_1) \right] - \frac{\tau^2 E_{K_1 K_2}^2}{C_1'' C_2''} \]

Due to (20) and (21) we obtain:

\[
K^2 - 4 \det J = \left\{ \left[-\frac{\tau E_{K_2 K_2}}{C_2''} - a_2(r + a_2) \right] + \left[-\frac{\tau E_{K_1 K_1} + S''}{C_1''} - a_1(r + a_1) \right] \right\}^2 + \frac{4\tau^2 E_{K_1 K_2}^2}{C_1'' C_2''} > 0
\]

We conclude that conditions (18) and (19) are satisfied so that the equilibrium is a saddle-point which is approached in a monotonic way.
3.2 Optimal investment policies

The firm's equilibrium values of the productive and abatement capital stock satisfy:

\[S'(K_1^*) = (r + a_1)C'_1(a_1 K_1^*) + \tau E_{K_1}(K_1^*, K_2^*) \] (23)

\[-\tau E_{K_2}(K_1^*, K_2^*) = (r + a_2)C'_2(a_2 K_2^*) \] (24)

For both capital stocks it holds that in equilibrium marginal revenue equals marginal cost. Compared to the standard investment models with convex investment costs (e.g. Takayama (1985), pp. 698-699), here marginal cost of productive investment has increased with \(\tau E_{K_1} \). This is because owning an additional unit of productive capital stock increases pollution with \(E_{K_1} \) so that additional tax must be paid at the expense of \(\tau E_{K_1} \). We conclude that introducing a tax on pollution results in a lower equilibrium value of productive capital stock, and thus in a lower level of production and pollution. The marginal revenue of abatement capital stock consists of a decrease in taxation expenses due to the fact that the extra unit of abatement capital stock reduces pollution. Comparative static analysis shows that, surprisingly enough, the level of pollution in equilibrium does not necessarily decrease when the pollution tax rate increases. But, from comparative dynamic analysis we can conclude that cumulative discounted pollution certainly decreases with increasing pollution tax rate (cf. Xepapadeas (1992), pp. 264-266).

Let us assume for the moment that the productive investment rate is positive. Then, after solving the differential equation (11), substituting (9) (with \(\eta_1 = 0 \)) into this relation, and using (23) as a fixed point, we derive that at each moment of time the level of productive investment must satisfy

\[
\int_t^\infty \{ S'(K_1(s)) - \tau E_{K_1}(K_1(s), K_2(s)) \} \exp(-(a_1 + r)(s-t))ds - C'_1(I_1(t)) = 0
\] (25)

where the left-hand side is the "net present value of marginal investment". For an interpretation consider the acquisition of an extra unit of capital at time \(t \). The firm incurs an extra expense at time \(t \) in amount of marginal investment cost \(C'_1 \). On the other hand, the marginal unit of productive capital generates - as of time \(t \) - a stream of cash flows consisting of revenue from selling products \((S') \) minus pollution tax payments \((\tau E_{K_1}) \).
This cash flow stream is corrected for depreciation by multiplication by \(\exp(-a_1(s-t)) \) and is discounted to time \(t \) by multiplication by \(\exp(-r(s-t)) \). Condition (25) states that the net present value of marginal productive investment equals zero. Hence, the optimal level of productive investment satisfies the fundamental economic principle of balancing marginal revenue with marginal expenses.

If the productive investment rate equals zero (25) changes into:

\[
-\eta_1 = \int_t^\infty \{ S'(K_1(s)) - r E_{K_1}(K_1(s), K_2(s)) \} \exp(-(a_1 + r)(s-t)) ds - C_1'(0) \tag{26}
\]

This expression shows that the firm does not invest when the net present value of marginal investment is negative. This makes sense, because now marginal expenses exceed marginal revenue. (26) shows that it will be optimal to have a zero productive investment rate when the productive capital stock is large and the abatement capital stock is low.

From (10), (12) and (24) we obtain that a positive abatement investment rate always satisfies the following equation:

\[
\int_t^\infty -r E_{K_2}(K_1(s), K_2(s)) \exp(-(a_2 + r)(s-t)) ds - C_2'(I_2(t)) = 0 \tag{27}
\]

(27) implies that the level of abatement investments is such that marginal abatement investment expenses \(C_2' \) balance the discounted decrease in pollution tax payments over the whole planning period, caused by an extra unit of abatement investment carried out at time \(t \). We conclude that the net present value of marginal abatement investment equals zero. Analogous to the case of productive investment it holds that abatement investment will be zero whenever this net present value is negative.

3.3 Phase plane analysis

Linearization of (2), (3), (11) and (12) around the steady state yields the following system

\[
\dot{z} = J(z - z^*), \tag{28}
\]

where \(z = (K_1, K_2, \lambda_1, \lambda_2)^T \in \mathbb{R}^4 \), \(z^* \) is the stationary state and \(J \) is the Jacobian presented in (16). A general solution is of the form
\[z(t) = \sum_{i=1}^{4} c_i z_i \exp(\xi_i t) + z^*, \quad (29) \]

where \(\xi_1, \xi_2, \xi_3, \xi_4 \) are the eigenvalues of \(J \) and \(z_1, z_2, z_3, z_4 \) are the corresponding eigenvectors, as far as all \(\xi_i \) have multiplicity 1. For this model the latter is assured by inequality \((22) \) (cf. eqn. \((5.36) \) of Feichtinger and Hartl \((1986) \)).

Because conditions \((18) \) and \((19) \) are satisfied, we know from Theorem 5.4 of Feichtinger and Hartl \((1986) \) that all eigenvalues are real, with \(\xi_{1,2} < 0 \) and \(\xi_{3,4} > 0 \). For all solutions in the stable manifold it holds that \(c_3 = c_4 = 0 \) in \((29) \). Otherwise the solution would explode, because \(\xi_{3,4} > 0 \).

If we only consider the first two coordinates of the linearized system, and we set the second coordinates of \(z_1 \) and \(z_2 \) equal to unity (this can be done without any objection since the eigenvectors are unique only up to a scalar multiple), we obtain:

\[
\begin{pmatrix}
K_1 \\
K_2
\end{pmatrix} = c_1 \exp(\xi_1 t) \begin{pmatrix} z_{11} \\ 1 \end{pmatrix} + c_2 \exp(\xi_2 t) \begin{pmatrix} z_{21} \\ 1 \end{pmatrix} + \begin{pmatrix} K_1^* \\ K_2^* \end{pmatrix} \quad (30)
\]

After differentiation of \((30) \) w.r.t. time we get:

\[
\begin{pmatrix}
\dot{K}_1 \\
\dot{K}_2
\end{pmatrix} = \xi_1 c_1 \exp(\xi_1 t) \begin{pmatrix} z_{11} \\ 1 \end{pmatrix} + \xi_2 c_2 \exp(\xi_2 t) \begin{pmatrix} z_{21} \\ 1 \end{pmatrix} \quad (31)
\]

Next, \((30) \) may be solved for \(c_1 \exp(\xi_1 t), c_2 \exp(\xi_2 t), \)

\[
c_1 \exp(\xi_1 t) = \frac{K_1 - K_1^* - z_{21}(K_2 - K_2^*)}{z_{11} - z_{21}},
\]

\[
c_2 \exp(\xi_2 t) = \frac{z_{11}(K_2 - K_2^*) - (K_1 - K_1^*)}{z_{11} - z_{21}}, \quad (32)
\]

and substituting from \((32) \), we may write \((31) \) as:

\[
\begin{pmatrix}
\dot{K}_1 \\
\dot{K}_2
\end{pmatrix} = \frac{1}{z_{11} - z_{21}} \begin{pmatrix}
\xi_1 z_{11} - \xi_2 z_{21} & z_{11} z_{21}(\xi_2 - \xi_1) \\
\xi_1 - \xi_2 & \xi_2 z_{11} - \xi_1 z_{21}
\end{pmatrix} \begin{pmatrix} K_1 - K_1^* \\ K_2 - K_2^* \end{pmatrix} \quad (33)
\]

To draw a phase diagram we are interested in the slope of the isocones \(\dot{K}_1 = 0 \) and \(\dot{K}_2 = 0 \):
To calculate these slopes we have to restrict our attention to the case where \(r = 0 \). Furthermore, to simplify the tedious calculations we impose that \(a_1 = a_2 = a \). By following the method employed in Turnovsky (1981) we can show that the slopes of the two lines are respectively (the proof is relegated to the Appendix):

\[
\left. \frac{dK_2}{dK_1} \right|_{K_1 = 0} = \frac{-\partial \hat{K}_1}{\partial K_1} \left| \frac{\partial K_1}{\partial K_2} \right| = \frac{\xi_2 z_{21} - \xi_1 z_{11}}{z_{11} z_{21} (\xi_2 - \xi_1)}
\]

\[
\left. \frac{dK_2}{dK_1} \right|_{K_2 = 0} = \frac{-\partial \hat{K}_2}{\partial K_2} \left| \frac{\partial K_1}{\partial K_2} \right| = \frac{\xi_2 - \xi_1}{\xi_2 z_{11} - \xi_1 z_{21}}
\]

(34)

(35)

A straightforward exercise shows that

\[
\left. \frac{dK_2}{dK_1} \right|_{K_1 = 0} > \left. \frac{dK_2}{dK_1} \right|_{K_2 = 0},
\]

(36)

(37)

so that the \(\hat{K}_1 = 0 \) isocline is steeper than the \(\hat{K}_2 = 0 \) isocline.

Now, we are ready to draw the phase diagram, which is done in Figure 1. The line \(\hat{K}_1 = 0 \) traces out the combinations of \(K_1 \) and \(K_2 \) for which \(K_1 \) is stationary. Likewise \(\hat{K}_2 = 0 \) is the locus of combinations of \(K_1 \) and \(K_2 \) corresponding to stationary values of \(K_2 \). These two lines divide the \((K_1, K_2)\)-space into four quadrants. Above the line \(\hat{K}_1 = 0, \hat{K}_1 > 0 \), while below it \(\hat{K}_1 < 0 \). Similarly above the line \(\hat{K}_2 = 0, \hat{K}_2 < 0 \), while below it \(\hat{K}_2 > 0 \). Accordingly, the overall adjustment of the system in the four regions is in the directions indicated by the arrows.

[Insert Figure 1 about here]
For reasons of surveyability we have only drawn those trajectories where abatement capital stock increases all the way and where productive capital stock is not very large in the beginning of the trajectory. We see that then both productive and abatement capital stock increase on the final path that ends at the equilibrium. This policy can be preceeded by a phase where K_1 decreases (productive investment can even be zero (cf. eqn. (26))) when K_1 is large, initially (trajectory (a)). Trajectory (a) could be the final phase of a solution where, at time zero, the firm is at its unregulated equilibrium at the moment that the government imposes a pollution tax (the unregulated steady state satisfies eqn. (23) without the term rE_{K_1}. This makes that K_1 is larger in the unregulated equilibrium compared to the regulated one). Remember that the phase diagram only holds locally around the steady state.

4 Marketable permits model

The implementation of marketable permits involves several steps (cf. Hahn (1989)). First, a target level of environmental quality is established. Next this level of environmental quality is defined in terms of total allowable pollution. Permits are then allocated to firms, with each permit enabling the owner to pollute a specified amount. Firms are allowed to trade these permits among themselves.

In the USA there has been some limited experience with programs of marketable permits for the regulation of air and water quality, while in Europe there is hardly no experience with marketable permits. The major program of imposing marketable permits as a mechanism for providing economic incentives for pollution control in the USA is the Environmental Protection Agency’s Emissions Trading Program for the regulation of air quality (see Tietenberg (1985)).

Existing systems of marketable permits in the United States embody a kind of "grandfathering" scheme involving an initial distribution of pollution permits or "rights" among polluters based on historical pollution. According to Cropper and Oates (1992) a drawback of this system is that heavy polluters are rewarded by receiving a lot of permits, which they can then use either to validate their own pollution output or sell to other firms. In this way the "Polluter Pays Principle" is violated.

Compared to a pollution tax system, a major advantage of the marketable permit approach is that it gives the government direct control over the level of pollution. Under the taxes approach, the government must set a tax, and if, for example, the tax turns
out to be low, pollution still exceed permissible levels. The government will find itself in
the uncomfortable position of having to adjust and readjust the tax to ensure that the
environment is not severely damaged (Cropper and Oates (1992)).

In this section we consider a firm that has to buy permits in order to be allowed to
pollute the environment. According to Siebert (1992, p. 142) marketable permits may
be defined on a temporary basis or without a time limit. We will assume here that once
a permit is bought it remains valid forever (contrary to e.g. the Wisconsin Fox River
Water Permits which are only valid for five years (Hahn (1989))).

If it has good growth prospects the firm will increase production and, after assuming for
the moment that abatement capital is too costly, this will also increase pollution which
implies that the firm needs to buy extra permits. These permits can be sold to other
firms at the moment that the firm reduces pollution by either a sufficient increase of
abatement capital stock or a reduction of production. If the price of a permit equals
\(p \) and the firm needs one permit per unit of pollution, then the firm's expenses on the
permit market at time \(t \) equal

\[
pE = p\{E_{K_1}K_1 + E_{K_2}K_2\} = p\{E_{K_1}(I_1 - a_1K_1) + E_{K_2}(I_2 - a_2K_2)\}.
\]

(39)

Notice that spendings turn into receipts as soon as pollution decreases over time.
Whether the price of a permit will go up or down depends on the behavior of all com-
petitors in the market. Leaving abatement activities aside for the moment, if all firms
want to produce more they implicitly want to increase pollution. Therefore, the demand
for pollution permits goes up and the price of the permits increases. Notice in this re-
spect that the amount of permits on the market is fixed, which in turn leads to a fixed
level of pollution generated by the whole sector.

The above description refers to a market for pollution permits that provides great flexi-
bility due to the absence of transactions costs and other obstacles to trading. However,
in practice the rules of the marketable permits can be so restrictive that the flexibility
they offer is more imaginary than real (see Cropper and Oates (1992), Hahn (1989)).
Nevertheless, in this paper we assume that trading barriers are absent on the permit
market.

Like in the tax model also here the objective of the firm is to maximize the net cash flow
stream:

\[
\text{maximize : } \int_0^\infty \{S(K_1) - C_1(I_1) - C_2(I_2) - pE(I_1, I_2, K_1, K_2)\} \exp(-rt)dt
\]

(40)
The optimal control problem is to maximize (40) subject to (2), (3), (5) and (6). Similar calculations like in the model with a pollution tax lead to the following results. The optimal steady state is a solution of:

\[\begin{align*}
I_1 - a_1 K_1 &= 0 \\
I_2 - a_2 K_2 &= 0 \\
(r + a_1) \lambda_1 - S'(K_1) - a_1 p E_{K_1}(K_1, K_2) &= 0 \\
(r + a_2) \lambda_2 - a_2 p E_{K_2}(K_1, K_2) &= 0 \\
-C'_1(I_1) - p E_{K_1}(K_1, K_2) + \lambda_1 &= 0 \\
-C'_2(I_2) - p E_{K_2}(K_1, K_2) + \lambda_2 &= 0
\end{align*} \]

The Jacobian evaluated at the equilibrium has the following form:

\[J = \begin{bmatrix}
\frac{-p E_{K_1} K_1}{C_1''} - a_1 & \frac{-p E_{K_1} K_2}{C_2''} - a_2 & \frac{1}{C_1''} & 0 \\
\frac{-p E_{K_1} K_2}{C_2''} & \frac{-p E_{K_2} K_2}{C_2''} & \frac{1}{C_2''} & 0 \\
\alpha & \beta & \gamma & \frac{p E_{K_1} K_1}{C_1''} + a_1 + \frac{p E_{K_1} K_2}{C_2''} \\
\beta & \gamma & \frac{p E_{K_2} K_1}{C_1''} + \frac{p E_{K_2} K_2}{C_2''} + a_1 + a_2 & r + a_2 + \frac{p E_{K_2} K_2}{C_2''}
\end{bmatrix} \] (41)

in which:

\[\begin{align*}
\alpha &= -S'' - p E_{K_1} K_1 \left(\frac{p E_{K_1} K_1}{C_1''} + 2a_1 \right) - \frac{p^2 E_{K_1}^2 K_2}{C_2''} \\
\beta &= -p E_{K_1} K_2 \left(\frac{p E_{K_1} K_1}{C_1''} + \frac{p E_{K_2} K_2}{C_2''} + a_1 + a_2 \right) \\
\gamma &= \frac{-p^2 E_{K_1}^2 K_2}{C_1''} - p E_{K_2} K_2 \left(\frac{p E_{K_2} K_2}{C_2''} + 2a_2 \right)
\end{align*} \]

Using the computer program Mathematica we were able to calculate the determinant:
The value of the number K (cf. below expression (19)) equals:

$$K = \left[\frac{-pr E_{K_2 K_2}}{C_2''} - a_2(r + a_2) \right] + \left[\frac{-pr E_{K_1 K_1} + S''}{C_1''} - a_1(r + a_1) \right] < 0 \quad (43)$$

Comparing (42) and (43) with (17) and (20) we see that $\det J$ and L have the same value in the tax model and the permits model when $\tau = r_p$. Therefore, we can easily conclude that also here conditions (18) and (19) are satisfied so that we have saddle point stability with monotonic motions.

The firm's equilibrium value of productive capital stock is given by:

$$S'(K_{1}^{**}) = (r + a_1)C_1'(a_1 K_{1}^{**}) + rp E_{K_1}(K_{1}^{**}, K_{2}^{**}) \quad (44)$$

Hence marginal revenue equals marginal costs, while marginal pollution costs equal $rp E_{K_1}$. This is because increasing productive capital stock with one unit during one period raises pollution with E_{K_1}. Therefore, at the beginning of the period the firm has to buy additional permits at the expense of $p E_{K_1}$. These permits can be sold at the end of the period (notice that pollution increases only during one period) so that the firm needs to borrow $p E_{K_1}$ dollars for one period to finance the permits transaction. This increases interest costs with $rp E_{K_1}$.

Due to equation (44) we obtain that introducing a marketable permits system leads to a lower equilibrium value of productive capital stock, which in turn leads to lower levels of production and pollution. Further, we see that the effects of marketable permits are particularly significant when the interest rate is large.

At each moment of time the productive investment rate, whenever it is positive, must satisfy:

$$\int_{t}^{\infty} \{ S'(K_1(s)) - p(s)\dot{E}_{K_1}(I_1(s), I_2(s), K_1(s), K_2(s)) \} \exp(-(a_1 + \tau)(s - t))ds - C_1'(I_1(t)) - p(t) E_{K_1}(K_1(t), K_2(t)) = 0 \quad (45)$$
Increasing the productive capital stock with one unit results in immediate extra expenses in amount of marginal cost C_1', plus spenndings on extra permits pE_{K_1} needed to account for the additional pollution generated by this extra unit of capital. It also generates - as of time t - a stream of cash flows consisting of revenue from selling products (S') and changes in future expenses on the permit market ($-pE_{K_1}$). Hence, according to (45) the firm fixes productive investment such that the discounted cash inflows and outflows, which are due to marginal investment, are balanced. To state this differently: the net present value of marginal investment equals zero.

The firm’s equilibrium value of abatement capital stock is given by

$$ (r + a_2)C'_2(a_2K_2^{**}) = -rpE_{K_2}(K_1^{**}, K_2^{**}) $$

while, for every time t, positive abatement investments satisfy:

$$ -\int_t^\infty p(s)E_{K_2}(I_1(s), I_2(s), K_1(s), K_2(s)) \exp(-(a_2 + r)(s - t)) ds + $$

$$ -C'_2(I_2(t)) - p(t)E_{K_2}(K_1(t), K_2(t)) = 0 $$

(47) implies that marginal abatement investment expenses (C'_2) balance the changes in cash flow on the permit market, caused by this marginal abatement investment. The additional cash flows on the permit market consist of an immediate cash inflow ($-pE_{K_2}$, note that $E_{K_2} < 0$) and revenue/expenses over the remaining planning period.

After comparing (23) and (24) with (44) and (46) we can conclude that a pollution tax and marketable permits lead to the same equilibrium if it holds that:

$$ rp = \tau $$

(48)

To understand this equation consider the situation where pollution is increased with one unit during one period. Then, in the pollution tax case the firm incurs an extra expense of τ dollars during this period, whereas in the marketable permits case the firm has to buy a permit in the beginning of this period that can be sold again after the period is over. This implies that the firm has to borrow an amount of money equal to the permit price p during this period, which leads to interest costs of rp dollars. Hence, pollution costs increase with the same amount under both instruments when (48) holds.
5 Conclusions

This contribution belongs to a category of papers that attempts to determine the effects of environmental regulation on the growth of an individual firm. It extends the analysis of its predecessors (e.g. Kort, Van Loon and Luptacik (1991), Hartl (1992), Xepapadeas (1992)) in at least two ways. First, we incorporated a more realistic (but also more complex) pollution function. With more realistic we mean that we explicitly deal with the fact that for lower levels of pollution more abatement effort is required to reduce pollution with some fixed amount. This is contrary to Kort, Van Loon and Luptacik (1991) and Xepapadeas (1992) where it is, rather unrealistically, assumed that abatement costs are independent of the pollution output generated by the production process.

Second, besides dealing with a pollution tax as a form of environmental regulation, we consider the effects marketable permits have on the firm's investment policy. As far as we know this is the first contribution where marketable permits are incorporated in a dynamic model of the firm.

It turns out that under both environmental instruments the equilibrium, where marginal revenue equals marginal cost, is stable and approached monotonically. Imposing a pollution tax as well as a marketable permits system decreases production and pollution in equilibrium. Effects of marketable permits on dynamic firm behavior are intensified in case of a high interest rate.

During the whole planning period the development of productive as well as abatement capital stock is completely determined by an investment rule that dictates the firm to stop investing when the net present value of marginal investment is negative and, when this is not the case, to fix the investment rate such that the net present value of marginal investment equals zero. Then the immediate expenses due to acquiring an additional unit of capital stock exactly balance the discounted future cash flows, such as revenue from selling products, as far as they result from this unit increase of capital stock.

After comparing the effects on the firm's investment policy of a pollution tax and marketable permits we concluded that long run firm behavior will be the same when the tax rate equals the interest rate multiplied by the price of a permit. This rule is economically interpreted and can be seen as a dynamic extension of the well known static result that there are similar effects whenever the permit price equals the tax rate (see e.g. Baumol and Oates (1988), p. 58).

Finally, we mention two interesting topics for future research. First, it could be interesting to consider a dynamic game of several firms operating on a market for pollution
permits. Such a framework could lead to strategic interactions like a firm that buys more permits than needed for covering its pollution in order to obstruct the growth of its competitors.

A second interesting model extension could be to consider permits of limited validity, as opposite to the model considered here where permits remain valid forever. Then the value of a marketable permit will depreciate over time and the resulting depreciation costs will certainly influence the above described rule under which the effects of a pollution tax and marketable permits are equivalent.

Acknowledgement
The author thanks Jan de Klein for computational assistance and an anonymous referee for his remarks. This research has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

References

Appendix. Derivation of the relations (36) and (37)

In case \(r = 0 \) the two negative eigenvalues of \(J \) are given by (see Feichtinger and Hartl (1986), p. 134):

\[
\xi_1 = -\sqrt{-\frac{K}{2} + \frac{1}{2} \sqrt{K^2 - 4 \det J}} \\
\xi_2 = -\sqrt{-\frac{K}{2} - \frac{1}{2} \sqrt{K^2 - 4 \det J}}
\]

(A.1)
(A.2)

The eigenvalue \(\xi_1 \) and its corresponding eigenvector \(z_1 \) have the following relationship

\[\xi_1 z_1 = J z_1 \]

(A.3)

and this equation can be expressed as (remember that here we assume that \(r = 0 \) and \(a_1 = a_2 = a \)):

\[
\begin{pmatrix}
 z_{11} \\
 1 \\
 z_{13} \\
 z_{14}
\end{pmatrix} =
\begin{pmatrix}
 -a & 0 & 1/C_1'' & 0 \\
 0 & -a & 0 & 1/C_2'' \\
 -S'' + \tau E_{K_1 K_1} & \tau E_{K_1 K_2} & a & 0 \\
 \tau E_{K_2 K_1} & \tau E_{K_2 K_2} & 0 & a
\end{pmatrix}
\begin{pmatrix}
 z_{11} \\
 z_{13} \\
 z_{13} \\
 z_{14}
\end{pmatrix}
\]

(A.4)

and solving for \(z_{11} \), we obtain

\[z_{11} = \left\{ C_2'' (\xi_1^2 - a^2) - \tau E_{K_2 K_2} \right\} / \tau E_{K_2 K_1} \]

(A.5)

Similarly, corresponding to the eigenvalue \(\xi_2 \) we have

\[z_{21} = \left\{ C_2'' (\xi_2^2 - a^2) - \tau E_{K_2 K_2} \right\} / \tau E_{K_2 K_1} \]

(A.6)

Using (20), (21) (where in both equations we put \(r = 0 \) and \(a_1 = a_2 = a \)), (A.1), (A.2), (A.5) and (A.6) we may now establish the following expressions for terms appearing in (34) and (35):

\[
\xi_2 z_{21} - \xi_1 z_{11} = \frac{\left(\xi_2 - \xi_1 \right) C''}{\tau E_{K_2 K_1}} \left\{ a^2 + (\tau E_{K_1 K_1} - S'')/C_1'' + \sqrt{\det J} \right\}
\]

(A.7)
\[z_{11}z_{21} = -\frac{C''_2}{C_1''} \] \hspace{2cm} (A.8)

\[\xi_2 z_{11} - \xi_1 z_{21} = \frac{(\xi_1 - \xi_2)C_2''}{\tau E_{K_2K_1}} \left(a^2 + \sqrt{\det J + \tau E_{K_2K_1}/C_2''} \right) \] \hspace{2cm} (A.9)

Now, substitution of (A.7)-(A.9) into (34) and (35) leads to (36) and (37).

Q.E.D.
Figure caption

Figure 1. Phase diagram in case of no discounting and equal depreciation rates for both capital stocks.
Figure 1
Discussion Paper Series, CentER, Tilburg University, The Netherlands:

(For previous papers please consult previous discussion papers.)

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9239</td>
<td>H. Bloemen</td>
<td>A Model of Labour Supply with Job Offer Restrictions</td>
</tr>
<tr>
<td>9240</td>
<td>F. Drost and Th. Nijman</td>
<td>Temporal Aggregation of GARCH Processes</td>
</tr>
<tr>
<td>9241</td>
<td>R. Gilles, P. Ruys and J. Shou</td>
<td>Coalition Formation in Large Network Economies</td>
</tr>
<tr>
<td>9242</td>
<td>P. Kort</td>
<td>The Effects of Marketable Pollution Permits on the Firm’s Optimal Investment Policies</td>
</tr>
<tr>
<td>9243</td>
<td>A.L. Bovenberg and F. van der Ploeg</td>
<td>Environmental Policy, Public Finance and the Labour Market in a Second-Best World</td>
</tr>
<tr>
<td>9244</td>
<td>W.G. Gale and J.K. Scholz</td>
<td>IRAs and Household Saving</td>
</tr>
<tr>
<td>9245</td>
<td>A. Bera and P. Ng</td>
<td>Robust Tests for Heteroskedasticity and Autocorrelation Using Score Function</td>
</tr>
<tr>
<td>9246</td>
<td>R.T. Baillie, C.F. Chung and M.A. Tieslau</td>
<td>The Long Memory and Variability of Inflation: A Reappraisal of the Friedman Hypothesis</td>
</tr>
<tr>
<td>9247</td>
<td>M.A. Tieslau, P. Schmidt and R.T. Baillie</td>
<td>A Generalized Method of Moments Estimator for Long-Memory Processes</td>
</tr>
<tr>
<td>9248</td>
<td>K. Wärneryd</td>
<td>Partisanship as Information</td>
</tr>
<tr>
<td>9249</td>
<td>H. Huizinga</td>
<td>The Welfare Effects of Individual Retirement Accounts</td>
</tr>
<tr>
<td>9250</td>
<td>H.G. Bloemen</td>
<td>Job Search Theory, Labour Supply and Unemployment Duration</td>
</tr>
<tr>
<td>9251</td>
<td>S. Eijffinger and E. Schaling</td>
<td>Central Bank Independence: Searching for the Philosophers’ Stone</td>
</tr>
<tr>
<td>9252</td>
<td>A.L. Bovenberg and R.A. de Mooij</td>
<td>Environmental Taxation and Labor-Market Distortions</td>
</tr>
<tr>
<td>9253</td>
<td>A. Lusardi</td>
<td>Permanent Income, Current Income and Consumption: Evidence from Panel Data</td>
</tr>
<tr>
<td>9254</td>
<td>R. Beetsma</td>
<td>Imperfect Credibility of the Band and Risk Premia in the European Monetary System</td>
</tr>
<tr>
<td>9301</td>
<td>N. Kahana and S. Nitzan</td>
<td>Credibility and Duration of Political Contests and the Extent of Rent Dissipation</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>9302</td>
<td>W. Güth and S. Nitzan</td>
<td>Are Moral Objections to Free Riding Evolutionarily Stable?</td>
</tr>
<tr>
<td>9303</td>
<td>D. Karotkin and S. Nitzan</td>
<td>Some Peculiarities of Group Decision Making in Teams</td>
</tr>
<tr>
<td>9304</td>
<td>A. Lusardi</td>
<td>Euler Equations in Micro Data: Merging Data from Two Samples</td>
</tr>
<tr>
<td>9305</td>
<td>W. Güth</td>
<td>A Simple Justification of Quantity Competition and the Cournot-Oligopoly Solution</td>
</tr>
<tr>
<td>9306</td>
<td>B. Peleg and S. Tijs</td>
<td>The Consistency Principle For Games in Strategic Form</td>
</tr>
<tr>
<td>9307</td>
<td>G. Imbens and A. Lancaster</td>
<td>Case Control Studies with Contaminated Controls</td>
</tr>
<tr>
<td>9308</td>
<td>T. Ellingsen and K. Wärneryd</td>
<td>Foreign Direct Investment and the Political Economy of Protection</td>
</tr>
<tr>
<td>9309</td>
<td>H. Bester</td>
<td>Price Commitment in Search Markets</td>
</tr>
<tr>
<td>9310</td>
<td>T. Callan and A. van Soest</td>
<td>Female Labour Supply in Farm Households: Farm and Off-Farm Participation</td>
</tr>
<tr>
<td>9311</td>
<td>M. Pradhan and A. van Soest</td>
<td>Formal and Informal Sector Employment in Urban Areas of Bolivia</td>
</tr>
<tr>
<td>9312</td>
<td>Th. Nijman and E. Sentana</td>
<td>Marginalization and Contemporaneous Aggregation in Multivariate GARCH Processes</td>
</tr>
<tr>
<td>9313</td>
<td>K. Wärneryd</td>
<td>Communication, Complexity, and Evolutionary Stability</td>
</tr>
<tr>
<td>9314</td>
<td>O.P. Attanasio and M. Browning</td>
<td>Consumption over the Life Cycle and over the Business Cycle</td>
</tr>
<tr>
<td>9315</td>
<td>F. C. Drost and B. J. M. Werker</td>
<td>A Note on Robinson’s Test of Independence</td>
</tr>
<tr>
<td>9316</td>
<td>H. Hamers, P. Borm and S. Tijs</td>
<td>On Games Corresponding to Sequencing Situations with Ready Times</td>
</tr>
<tr>
<td>9317</td>
<td>W. Güth</td>
<td>On Ultimatum Bargaining Experiments - A Personal Review</td>
</tr>
<tr>
<td>9318</td>
<td>M.J.G. van Eijs</td>
<td>On the Determination of the Control Parameters of the Optimal Can-order Policy</td>
</tr>
<tr>
<td>9319</td>
<td>S. Hurkens</td>
<td>Multi-sided Pre-play Communication by Burning Money</td>
</tr>
<tr>
<td>9321</td>
<td>A.L. Bovenberg and S. Smulders</td>
<td>Environmental Quality and Pollution-saving Technological Change in a Two-sector Endogenous Growth Model</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>9322</td>
<td>K.-E. Wärneryd</td>
<td>The Will to Save Money: an Essay on Economic Psychology</td>
</tr>
<tr>
<td>9323</td>
<td>D. Talman, Y. Yamamoto and Z. Yang</td>
<td>The ((2^{n+1} - 2))-Ray Algorithm: A New Variable Dimension Simplicial Algorithm For Computing Economic Equilibria on (S^n \times R^m)</td>
</tr>
<tr>
<td>9324</td>
<td>H. Huizinga</td>
<td>The Financing and Taxation of U.S. Direct Investment Abroad</td>
</tr>
<tr>
<td>9326</td>
<td>T.C. To</td>
<td>Infant Industry Protection with Learning-by-Doing</td>
</tr>
<tr>
<td>9327</td>
<td>J.P.J.F. Scheepens</td>
<td>Bankruptcy Litigation and Optimal Debt Contracts</td>
</tr>
<tr>
<td>9328</td>
<td>T.C. To</td>
<td>Tariffs, Rent Extraction and Manipulation of Competition</td>
</tr>
<tr>
<td>9329</td>
<td>F. de Jong, T. Nijman and A. Röell</td>
<td>A Comparison of the Cost of Trading French Shares on the Paris Bourse and on SEAQ International</td>
</tr>
<tr>
<td>9330</td>
<td>H. Huizinga</td>
<td>The Welfare Effects of Individual Retirement Accounts</td>
</tr>
<tr>
<td>9331</td>
<td>H. Huizinga</td>
<td>Time Preference and International Tax Competition</td>
</tr>
<tr>
<td>9332</td>
<td>V. Feltkamp, A. Koster, A. van den Nouweland, P. Borm and S. Tijs</td>
<td>Linear Production with Transport of Products, Resources and Technology</td>
</tr>
<tr>
<td>9333</td>
<td>B. Lauterbach and U. Ben-Zion</td>
<td>Panic Behavior and the Performance of Circuit Breakers: Empirical Evidence</td>
</tr>
<tr>
<td>9334</td>
<td>B. Melenberg and A. van Soest</td>
<td>Semi-parametric Estimation of the Sample Selection Model</td>
</tr>
<tr>
<td>9335</td>
<td>A.L. Bovenberg and F. van der Ploeg</td>
<td>Green Policies and Public Finance in a Small Open Economy</td>
</tr>
<tr>
<td>9336</td>
<td>E. Schaling</td>
<td>On the Economic Independence of the Central Bank and the Persistence of Inflation</td>
</tr>
<tr>
<td>9337</td>
<td>G.-J. Otten</td>
<td>Characterizations of a Game Theoretical Cost Allocation Method</td>
</tr>
<tr>
<td>9338</td>
<td>M. Gradstein</td>
<td>Provision of Public Goods With Incomplete Information: Decentralization vs. Central Planning</td>
</tr>
<tr>
<td>9339</td>
<td>W. Güth and H. Kliemt</td>
<td>Competition or Co-operation</td>
</tr>
<tr>
<td>9340</td>
<td>T.C. To</td>
<td>Export Subsidies and Oligopoly with Switching Costs</td>
</tr>
<tr>
<td>9341</td>
<td>A. Demirgüç-Kunt and H. Huizinga</td>
<td>Barriers to Portfolio Investments in Emerging Stock Markets</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>9342</td>
<td>G.J. Almekinders</td>
<td>Theories on the Scope for Foreign Exchange Market Intervention</td>
</tr>
<tr>
<td>9343</td>
<td>E.R. van Dam and W.H. Haemers</td>
<td>Eigenvalues and the Diameter of Graphs</td>
</tr>
<tr>
<td>9344</td>
<td>H. Carlsson and S. Dasgupta</td>
<td>Noise-Proof Equilibria in Signaling Games</td>
</tr>
<tr>
<td>9345</td>
<td>F. van der Ploeg and A.L. Bovenberg</td>
<td>Environmental Policy, Public Goods and the Marginal Cost of Public Funds</td>
</tr>
<tr>
<td>9346</td>
<td>J.P.C. Blanc and R.D. van der Mei</td>
<td>The Power-series Algorithm Applied to Polling Systems with a Dormant Server</td>
</tr>
<tr>
<td>9347</td>
<td>J.P.C. Blanc</td>
<td>Performance Analysis and Optimization with the Power-series Algorithm</td>
</tr>
<tr>
<td>9348</td>
<td>R.M.W.J. Beetsma and F. van der Ploeg</td>
<td>Intramarginal Interventions, Bands and the Pattern of EMS Exchange Rate Distributions</td>
</tr>
<tr>
<td>9349</td>
<td>A. Simonovits</td>
<td>Intercohort Heterogeneity and Optimal Social Insurance Systems</td>
</tr>
<tr>
<td>9350</td>
<td>R.C. Douven and J.C. Engwerda</td>
<td>Is There Room for Convergence in the E.C.?</td>
</tr>
<tr>
<td>9351</td>
<td>F. Vella and M. Verbeek</td>
<td>Estimating and Interpreting Models with Endogenous Treatment Effects: The Relationship Between Competing Estimators of the Union Impact on Wages</td>
</tr>
<tr>
<td>9352</td>
<td>C. Meghir and G. Weber</td>
<td>Intertemporal Non-separability or Borrowing Restrictions? A Disaggregate Analysis Using the US CEX Panel</td>
</tr>
<tr>
<td>9353</td>
<td>V. Feltkamp</td>
<td>Alternative Axiomatic Characterizations of the Shapley and Banzhaf Values</td>
</tr>
<tr>
<td>9355</td>
<td>Z. Yang</td>
<td>A Simplicial Algorithm for Computing Robust Stationary Points of a Continuous Function on the Unit Simplex</td>
</tr>
<tr>
<td>9356</td>
<td>E. van Damme and S. Hurkens</td>
<td>Commitment Robust Equilibria and Endogenous Timing</td>
</tr>
<tr>
<td>9357</td>
<td>W. Güth and B. Peleg</td>
<td>On Ring Formation In Auctions</td>
</tr>
<tr>
<td>9358</td>
<td>V. Bhaskar</td>
<td>Neutral Stability In Asymmetric Evolutionary Games</td>
</tr>
<tr>
<td>9359</td>
<td>F. Vella and M. Verbeek</td>
<td>Estimating and Testing Simultaneous Equation Panel Data Models with Censored Endogenous Variables</td>
</tr>
<tr>
<td>9360</td>
<td>W.B. van den Hout and J.P.C. Blanc</td>
<td>The Power-Series Algorithm Extended to the BMAP/PH/1 Queue</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>9361</td>
<td>R. Heuts and J. de Klein</td>
<td>An ((x,q)) Inventory Model with Stochastic and Interrelated Lead Times</td>
</tr>
<tr>
<td>9362</td>
<td>K.-E. Wärneryd</td>
<td>A Closer Look at Economic Psychology</td>
</tr>
<tr>
<td>9363</td>
<td>P.J.-J. Herings</td>
<td>On the Connectedness of the Set of Constrained Equilibria</td>
</tr>
<tr>
<td>9364</td>
<td>P.J.-J. Herings</td>
<td>A Note on "Macroeconomic Policy in a Two-Party System as a Repeated Game"</td>
</tr>
<tr>
<td>9365</td>
<td>F. van der Ploeg and A. L. Bovenberg</td>
<td>Direct Crowding Out, Optimal Taxation and Pollution Abatement</td>
</tr>
<tr>
<td>9366</td>
<td>M. Pradhan</td>
<td>Sector Participation in Labour Supply Models: Preferences or Rationing?</td>
</tr>
<tr>
<td>9368</td>
<td>M.R. Baye, D. Kovenock and C.G. de Vries</td>
<td>The Solution to the Tullock Rent-Seeking Game When (R > 2): Mixed-Strategy Equilibria and Mean Dissipation Rates</td>
</tr>
<tr>
<td>9369</td>
<td>T. van de Klundert and S. Smulders</td>
<td>The Welfare Consequences of Different Regimes of Oligopolistic Competition in a Growing Economy with Firm-Specific Knowledge</td>
</tr>
<tr>
<td>9370</td>
<td>G. van der Laan and D. Talman</td>
<td>Intersection Theorems on the Simplotope</td>
</tr>
<tr>
<td>9371</td>
<td>S. Muto</td>
<td>Alternating-Move Preplays and (vN - M) Stable Sets in Two Person Strategic Form Games</td>
</tr>
<tr>
<td>9372</td>
<td>S. Muto</td>
<td>Voters' Power in Indirect Voting Systems with Political Parties: the Square Root Effect</td>
</tr>
<tr>
<td>9373</td>
<td>S. Smulders and R. Gradus</td>
<td>Pollution Abatement and Long-term Growth</td>
</tr>
<tr>
<td>9374</td>
<td>C. Fernandez, J. Osiewalski and M.F.J. Steel</td>
<td>Marginal Equivalence in (v)-Spherical Models</td>
</tr>
<tr>
<td>9375</td>
<td>E. van Damme</td>
<td>Evolutionary Game Theory</td>
</tr>
<tr>
<td>9376</td>
<td>P.M. Kort</td>
<td>Pollution Control and the Dynamics of the Firm: the Effects of Market Based Instruments on Optimal Firm Investments</td>
</tr>
</tbody>
</table>