The net present value in dynamic models of the firm
Kort, P.M.

Publication date:
1987

Citation for published version (APA):
Kort, P. M. (1987). The net present value in dynamic models of the firm. (Research memorandum / Tilburg University, Department of Economics; Vol. FEW 278). Unknown Publisher.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
THE NET PRESENT VALUE IN DYNAMIC MODELS OF THE FIRM

Peter M. Kort

FEW 278
ABSTRACT
In this paper we introduce the well-known net present value criterion in a dynamic model of the firm, namely in a model in which investment can be financed by equity and debt. It turns out that within this model the firm tries to reach its equilibrium level as soon as possible. The optimality of this level is characterized by the net present value of marginal investment being equal to zero.

1. Introduction
In business economics, the net present value approach is used as a method which evaluates the desirability of an investment proposal. The net present value of such a proposal is defined by the sum of the discounted values of the net cash receipts minus the initial investment outlay (see Levy & Sarnat (1978), p.26).

In this paper we show that within dynamic models of the firm the net present value can be used as follows: the firm must invest at its maximum if the net present value of marginal investment is positive. As soon as it equals zero marginal earnings are equal to marginal cost. Then, the firm is in its optimal situation and it starts paying out dividend.

To illustrate the net present value approach within dynamic models of the firm, we analyse a model in which investment can be financed by equity and debt. This model was originally designed by Lesourne (1973) and used as a framework for analysing the influence of taxation and activity analysis by Van Schijndel (1986, 1987) and Van Loon (1983), respectively. Van Hilten (1987) studied the contraction policies of the original model extended by profit tax and investment grants. In this paper we derive formulas for the net present value of marginal investment on growth- as well as on equilibrium-paths and we give an economic interpretation of these formulas.
2. The model with equity and debt financing

First, we formulate the model in symbols; afterwards the definition of the symbols and the interpretation of the model will be given.

\[
\text{maximize: } \int_{0}^{z} D(T) e^{-iT} dT + X(z) e^{-iZ} \quad (1)
\]

\[
\text{subject to: } K = I(T) - aK(T), K(0) = K_0 > 0 \quad (2)
\]

\[
\dot{X} = S(K) - aK(T) - rY(T) - D(T), X(0) = X_0 > 0 \quad (3)
\]

\[
K(T) = X(T) + Y(T) \quad (4)
\]

\[
0 \leq Y(T) \leq hX(T) \quad (5)
\]

\[
D(T) \geq 0 \quad (6)
\]

with:

D = dividend

I = gross investment

K = capital goods

S = earnings, \(S(K) > 0, \frac{dS}{dK} > 0, \frac{d^2S}{dK^2} < 0 \) \quad (6a)

T = time

X = equity

Y = debt

a = depreciation rate

i = discount rate of the shareholders

h = maximum debt to equity rate

r = interest rate on debt

z = planning horizon

The model describes a firm that maximizes its value to the shareholders (1). The state of the firm is fixed by the values of its capital goods (2) and equity (3). The firm finances its assets by equity and debt (4). The amount of debt available is restricted, because the firm is assumed to belong to a given risk-class (5). The firm is allowed to pay out no dividend (6) and it operates under decreasing returns to scale (6a). Later, we give an
assumption that rules out contraction policies and therefore a lower bound on investment is not necessary in the model formulation.

After substituting \(K - X \) for \(Y \) and using standard control theory application (see Feichtinger & Hartl (1986)), we derive the Lagrange function which includes the Hamiltonian and the constraints:

\[
L = D e^{-iT} + \psi_1(S(K) - (a+r)K + rX - D) + \psi_2(I - aK) + \lambda_1(K - X) + \\
\lambda_2((1+h)X - K) + \lambda_3D
\]

(7)

then, after some rearranging, the necessary conditions are:

\[
\begin{align*}
\psi_1 &= e^{-iT} + \lambda_3 \\
\psi_2 &= 0 \\
\psi_1 \left(\frac{dS}{dK} - (a+r) \right) + \lambda_1 - \lambda_2 &= 0 \\
-\psi_1 &= r\psi_1 - \lambda_1 + (1+h)\lambda_2 \\
\lambda_1(K - X) &= 0 \\
\lambda_2((1+h)X - K) &= 0 \\
\lambda_3D &= 0 \\
\psi_1(z) &= e^{-iz}
\end{align*}
\]

(8) \quad (9) \quad (10) \quad (11) \quad (12) \quad (13) \quad (14) \quad (15)

Applying the solution procedure of Van Loon (see Van Loon (1983), p.116) we may discern five different feasible paths, which are represented by table 1.
Path Y K K Feasible Policy
1 hX Y K* K YX Always growth with maximum debt
2 Y < 0 0 K* K YX Always redemption of debt
3 0 hX K YK X Always growth without debt
4 0 0 K* K X i < r stationary dividend without debt
5 hX 0 K Y K* i > r stationary dividend with maximum debt

Table 1. Features of feasible paths

in which:

\[K = K_{YX} \iff \frac{dS}{dK(K_{YX})} = a + r \] \hspace{1cm} (16)

\[K = K_{X} \iff \frac{dS}{dK(K_{X})} = a + i \] \hspace{1cm} (17)

\[K = K_{Y} \iff \frac{dS}{dK(K_{Y})} = a + \frac{h}{1+h} r + \frac{1}{1+h} i \] \hspace{1cm} (18)

We avoid contraction by assuming:

\[\left. \frac{dS}{dK} \right|_{K=K_0} > i + a \] \hspace{1cm} (19)

We also assume that \(X_0 \) is that small that it is optimal to start with maximum debt (see also Feichtinger & Hartl (1986), p.378):

\[K_0 = (1 + h) X_0 \] \hspace{1cm} (20)

After these assumptions, Van Loon's path connecting procedure can be used to prove that two optimal policy strings are left. The first one occurs if \(i < r \) and is represented by fig. 1.
It can be proved that on path 1 through 4 the following equation holds:

$$\lambda_3(T) e^{iT} = \frac{z}{T} \int (R_X(t) + a) e^{-(i+a)(t-T)} dt + \frac{z}{T} \int (R_X(t) + a) e^{-a(t-T)} \lambda_3(t) e^{iT} dt + e^{-(i+a)(z-T)} - 1$$

in which:

- $R_X = \text{marginal return on equity, which satisfies the following relation (see also Van Hilten (1987))}$:

$$R_X = \frac{dS}{dK} - a + \left(\frac{dS}{dK} - a - r\right)Y_X$$

In the Appendix equation (21) is derived for path 1. Note that λ_3 is the Lagrange multiplier of the restriction that dividend is greater than zero. Therefore, λ_3 is equal to the discounted extra value of the Hamiltonian gained, if the lower bound of dividend is decreased by one dollar. On path 1 and path 3 the dollar would be used for investing, on path 2 for paying off debt. In this way, the left-hand side of equation (21) represents this extra value, but then discounted to T.

Fig.1 Master trajectory if $i < r$
On path 1, the first term on the right-hand side is equal to the direct marginal earnings of investment which consist of the present value of additional sales over the whole period due to the new equipment (the production capacity of this equipment decreases with rate \"a\" during the rest of the planning period). The second term represents the indirect marginal earnings of investment. An extra investment of one dollar on time-point \(T\) implies an increase in capital good stock of \(e^{-a(t-T)}\) on time-point \(t > T\), which generates an extra return of \((R_X(t) + a) e^{-a(t-T)}\). This extra return will be used for investment when "\(t\)" is situated on path 1 and path 3 and for paying off debt when "\(t\)" lies on path 2. It has the same effect as a decrease of the lower bound of dividend with this value on time-point \(t\) and according to the economic definition of \(\lambda_3\), the objective discounted to \(T\) is increased by \((R_X(t) + a) e^{-a(t-T)}\lambda_3(t) e^{iT}\). The third term is equal to the present value of the remaining new equipment at the end of the planning period (the value of the new equipment decreases with depreciation rate \"a\" during the rest of the planning period), while the fourth term represents the initial investment outlay of one dollar.

From the above, we can conclude that on path 1 the right-hand side of (21) represents the net present value of marginal investment. Due to the fact that \(\lambda_3\) is greater than zero on path 1, we can conclude that this net present value is greater than zero, so marginal earnings are greater than marginal cost of investment and therefore it is optimal for the firm to invest at its maximum until the level \(K^{*}_{yx}\) is reached. Then, \(\frac{dS}{dK}\) equals \(r + a\) and it follows from (22) that debt has a negative influence on \(R_X\) if the firm continues with expansion investment. So, although the net present value of marginal investment is positive, it is optimal for the firm to stop investing at its maximum and to start paying off debt, keeping \(I\) on depreciation level (path 2). Now, due to the facts that \(\frac{dS}{dK}\) equals \(a+r\) on path 2 and debt is zero on the paths 3 and 4, it follows from (22) that we can rewrite (21) into:
\begin{equation}
\lambda_3(T) e^{iT} = \int_T^z \frac{dS(t)}{dK(t)} e^{-(i+a)(t-T)} dt + \int_T^z \frac{dS(t)}{dK(t)} e^{-a(t-T)} \lambda_3(t) e^{iT} dt + e^{-(i+a)(z-T)} \tag{23}
\end{equation}

(23) means that on path 2 the marginal value of paying off debt \((= \lambda_3(T)e^{iT})\) equals the net present value of marginal investment. When all debt is paid off, (23) continues to hold, so the net present value of marginal investment is still positive. Therefore the firm again starts investing at its maximum, but now financed by equity only (path 3). When marginal return on equity equals \(i\), which happens when \(K\) reaches \(K^*_X\), it is optimal to pay out dividend (path 4). \(\lambda_3\) then equals zero and therefore expression (23) now turns into:

\begin{equation}
\int_T^z \frac{dS(t)}{dK(t)} e^{-(i+a)(t-T)} dt + e^{-(i+a)(z-T)} = 1 \tag{24}
\end{equation}

From this expression we conclude that the net present value of the last investment unit equals zero which means that the firm is on its optimal level. On the other paths this situation cannot be reached because of the active dividend restriction.

This solution shows that the firm tries to reach its optimal situation as soon as possible. To do so, it finances its investment to some instant by debt, even if debt is more expensive than equity.

The second optimal policy string (see fig. 2) occurs if debt money is cheap compared to equity.
Fig 2. Master trajectory if \(i > r \)

In this solution, debt will be at its maximum during the whole planning period and from (22) we can derive that the following holds for \(R_X \):

\[
R_X = (1+h) \left(\frac{dS}{dK} - a \right) - hr
\]

(25)

After substituting (25) in (21), we get that on path 1 it holds that:

\[
\lambda_3(T) e^{iT} = \int_T^Z \left((1+h) \frac{dS}{dK}(t) - h(r+a) \right) e^{-(i+a)(t-T)} \, dt + \\
\int_T^Z \left((1+h) \frac{dS}{dK}(t) - h(r+a) \right) e^{-a(t-T)} \lambda_3(t) e^{iT} \, dt + e^{-(i+a)(z-T)} - 1
\]

(26)

From (26) we can conclude that the net present value of marginal investment is greater than zero. Therefore, the firm will invest at its maximum. As soon as the amount of capital goods equals \(K^*_y \), \(R_X \) becomes equal to \(i \) (to see this, substitute (18) in (25)) and it is optimal to pay out dividend. Now, expression (26) changes into:

\[
\int_T^Z \left((1+h) \frac{dS}{dK}(t) - h(r+a) \right) e^{-(i+a)(t-T)} \, dt + e^{-(i+a)(z-T)} - 1 = 0
\]

(27)
So, the net present value of the last dollar invested is equal to zero. Therefore, marginal earnings equal marginal cost and the firm has reached its equilibrium level. In this solution it is never optimal to pay off debt, because the marginal return on equity is always greater than \(r \). This is caused by the fact that during the whole planning period capital goods remain below \(K_{yx}^* \).

Note
1) Gradus (1987) used this criterion of optimality to solve the Lancaster open loop Stackelberg differential game model.

Acknowledgement
The author likes to thank Dr. G.J.C.Th. van Schijndel (Philips Medical Systems, Best), Drs. R.H.J.M. Gradus, Prof. dr. P.A. Verheyen (both Tilburg University), Drs. O van Hilten (Limburg University, Maastricht) and Prof. dr. P.J.J.M. van Loon (Van Dien & Co, Utrecht) for interesting discussions and suggestions.

References

Hilten O. van, (1987), Contraction of a firm in a dynamic model, Paper to be presented at the SOR conference 1987 in Passau

Lesourne J., (1973), Modeles de Croissance des Entreprises, (Dunod, Paris)

Appendix. Derivation of the net present value equation on path 1 when $i < r$

On path 1, there is growth with maximum debt, so the following holds:

\[
\begin{align*}
\lambda_1 & = 0 \Rightarrow K > X \\
\lambda_2 & > 0 \Rightarrow K = (1+h)X \\
\lambda_3 & > 0 \Rightarrow D = 0
\end{align*}
\]

After substituting (28) and (29) in (10), we get:

\[
\lambda_2 = \nu_1(\frac{dS}{dK} - (a+r))
\]

Due to (11), (28) and (31) it holds that:

\[
-\nu_1 = ((1+h)\frac{dS}{dK} - h(a+r))\nu_1 - a\nu_1
\]

After using (8) and (30), we can rewrite (32) into:

\[
-\nu_1 = ((1+h)\frac{dS}{dK} - h(a+r))(e^{-iT}\lambda_3) - a\nu_1
\]

After solving this differential equation we get:
\[\nu_1(T) = e^{iT} \int_T^{t+12} \left[((1+h)\frac{ds(t)}{dt} - h(a+r))e^{-(i+a)t} + \lambda_3(t) e^{-at} \right] dt + e^{iT}C \]

(34)

When we substitute (8) and the equation for \(R_X \) in the case of maximum debt into (34), we get after multiplying with \(e^{iT} \):

\[\lambda_3(T) e^{iT} = \int_T^{t+12} (R_X(t) + a) e^{-(i+a)(t-T)} dt + \int_T^{t+12} (R_X(t) + a)e^{-a(t-T)} \lambda_3(t)e^{iT} dt + e^{(i+a)T} \]

(35)

When we use the definition of \(R_X \) also on the paths 2, 3 and 4, it can be proved, but we will not show it here, that on the corresponding intervals (35) holds on path 2, path 3 and also on path 4 for \(\lambda_3 \) equal to zero.

Therefore, we can rewrite (35) into:

\[\lambda_3(T) e^{iT} = \int_T^{Z} (R_X(t) + a)e^{-(i+a)(t-T)} dt + \int_T^{Z} (R_X(t) + a)e^{-a(t-T)} \lambda_3(t)e^{iT} dt + e^{-(i+a)(Z-T)} \]

(36)
IN 1986 REEDS VERSCHENEN

202 J.H.F. Schilderinck
Interregional Structure of the European Community. Part III

203 Antoon van den Elzen and Dolf Talman
A new strategy-adjustment process for computing a Nash equilibrium in a noncooperative more-person game

204 Jan Vingerhoets
Fabrication of copper and copper semis in developing countries. A review of evidence and opportunities

205 R. Heuts, J. van Lieshout, K. Baken
An inventory model: what is the influence of the shape of the lead time demand distribution?

206 A. van Soest, P. Kooreman
A Microeconometric Analysis of Vacation Behavior

207 F. Boekema, A. Nagelkerke
Labour Relations, Networks, Job-creation and Regional Development. A view to the consequences of technological change

208 R. Alessie, A. Kapteyn
Habit Formation and Interdependent Preferences in the Almost Ideal Demand System

209 T. Wansbeek, A. Kapteyn
Estimation of the error components model with incomplete panels

210 A.L. Hempenius
The relation between dividends and profits

211 J. Kriens, J.Th. van Lieshout
A generalisation and some properties of Markowitz' portfolio selection method

212 Jack P.C. Kleijnen and Charles R. Standridge
Experimental design and regression analysis in simulation: an FMS case study

213 T.M. Doup, A.H. van den Elzen and A.J.J. Talman
Simplicial algorithms for solving the non-linear complementarity problem on the simplopoTe

214 A.J.W. van de Gevel
The theory of wage differentials: a correction

215 J.P.C. Kleijnen, W. van Groenendaal
Regression analysis of factorial designs with sequential replication

216 T.E. Nijman and F.C. Palm
Consistent estimation of rational expectations models
217 P.M. Kort
The firm's investment policy under a concave adjustment cost function

218 J.P.C. Kleijnen
Decision Support Systems (DSS), en de kleren van de keizer ...

219 T.M. Doup and A.J.J. Talman
A continuous deformation algorithm on the product space of unit simplices

220 T.M. Doup and A.J.J. Talman
The 2-ray algorithm for solving equilibrium problems on the unit simplex

221 Th. van de Klundert, P. Peters
Price Inertia in a Macroeconomic Model of Monopolistic Competition

222 Christian Mulder
Testing Korteweg's rational expectations model for a small open economy

223 A.C. Meijdam, J.E.J. Plasmans
Maximum Likelihood Estimation of Econometric Models with Rational Expectations of Current Endogenous Variables

224 Arie Kapteyn, Peter Kooreman, Arthur van Soest
Non-convex budget sets, institutional constraints and imposition of concavity in a flexible household labor supply model

225 R.J. de Groof
Internationale coördinatie van economische politiek in een twee-regio-twee-sectoren model

226 Arthur van Soest, Peter Kooreman
Comment on 'Microeconometric Demand Systems with Binding Non-Negativity Constraints: The Dual Approach'

227 A.J.J. Talman and Y. Yamamoto
A globally convergent simplicial algorithm for stationary point problems on polytopes

228 Jack P.C. Kleijnen, Peter C.A. Karremans, Wim K. Oortwijn, Willem J.H. van Groenendaal
Jackknifing estimated weighted least squares

229 A.H. van den Elzen and G. van der Laan
A price adjustment for an economy with a block-diagonal pattern

230 M.H.C. Paardekooper
Jacobi-type algorithms for eigenvalues on vector- and parallel computer

231 J.P.C. Kleijnen
Analyzing simulation experiments with common random numbers
232 A.B.T.M. van Schaik, R.J. Mulder
On Superimposed Recurrent Cycles

233 M.H.C. Paardekooper
Sameh's parallel eigenvalue algorithm revisited

234 Pieter H.M. Ruys and Ton J.A. Storcken
Preferences revealed by the choice of friends

235 C.J.J. Huys en E.N. Kertzman
Effectieve belastingtarieven en kapitaalkosten

236 A.M.H. Gerards
An extension of König's theorem to graphs with no odd-K_4

237 A.M.H. Gerards and A. Schrijver
Signed Graphs - Regular Matroids - Grafts

238 Rob J.M. Alessie and Arie Kapteyn
Consumption, Savings and Demography

239 A.J. van Reeken
Begrippen rondom "kwaliteit"

240 Th.E. Nijman and F.C. Palmer
Efficiency gains due to using missing data. Procedures in regression models

241 S.C.W. Eijffinger
The determinants of the currencies within the European Monetary System
IN 1987 REEDS VERSCHenen

242 Gerard van den Berg
 Nonstationarity in job search theory

243 Annie Cuyt, Brigitte Verdonk
 Block-tridiagonal linear systems and branched continued fractions

244 J.C. de Vos, W. Vervaat
 Local Times of Bernoulli Walk

245 Arie Kapteyn, Peter Kooreman, Rob Willemse
 Some methodological issues in the implementation of subjective poverty definitions

 Sampling for Quality Inspection and Correction: AOQL Performance Criteria

247 D.B.J. Schouten
 Algemene theorie van de internationale conjuncturele en structurele afhankelijkheden

 On \((v, k, \lambda)\) graphs and designs with trivial automorphism group

249 Peter M. Kort
 The influence of a Stochastic Environment on the Firm's Optimal Dynamic Investment Policy

250 R.H.J.M. Gradus
 Preliminary version
 The reaction of the firm on governmental policy: a game-theoretical approach

251 J.G. de Gooijer, R.M.J. Heuts
 Higher order moments of bilinear time series processes with symmetrically distributed errors

252 P.H. Stevers, P.A.M. Versteijne
 Evaluatie van marketing-activiteiten

253 H.P.A. Mulders, A.J. van Reeken
 DATAAL - een hulpmiddel voor onderhoud van gegevensverzamelingen

254 P. Kooreman, A. Kapteyn
 On the identifiability of household production functions with joint products: A comment

255 B. van Riel
 Was er een profit-squeeze in de Nederlandse industrie?

256 R.P. Gilles
 Economies with coalitional structures and core-like equilibrium concepts
257 P.H.M. Ruys, G. van der Laan
Computation of an industrial equilibrium

258 W.H. Haemers, A.E. Brouwer
Association schemes

259 G.J.M. van den Boom
Some modifications and applications of Rubinstein's perfect equilibrium model of bargaining

260 A.W.A. Boot, A.V. Thakor, G.F. Udell
Competition, Risk Neutrality and Loan Commitments

261 A.W.A. Boot, A.V. Thakor, G.F. Udell
Collateral and Borrower Risk

262 A. Kapteyn, I. Woittiez
Preference Interdependence and Habit Formation in Family Labor Supply

263 B. Bettonvil
A formal description of discrete event dynamic systems including perturbation analysis

264 Dr. Sylvester C.W. Eijffinger
A monthly model for the monetary policy in the Netherlands

265 F. van der Ploeg, A.J. de Zeeuw
Conflict over arms accumulation in market and command economies

266 F. van der Ploeg, A.J. de Zeeuw
Perfect equilibrium in a model of competitive arms accumulation

267 Aart de Zeeuw
Inflation and reputation: comment

268 A.J. de Zeeuw, F. van der Ploeg
Difference games and policy evaluation: a conceptual framework

269 Frederick van der Ploeg
Rationing in open economy and dynamic macroeconomics: a survey

270 G. van der Laan and A.J.J. Talman
Computing economic equilibria by variable dimension algorithms: state of the art

A simplicial algorithm for finding equilibria in economies with linear production technologies

272 Th.E. Nijman and F.C. Palm
Consistent estimation of regression models with incompletely observed exogenous variables

273 Th.E. Nijman and F.C. Palm
Predictive accuracy gain from disaggregate sampling in arima - models
Raymond H.J.M. Gradus
The net present value of governmental policy: a possible way to find the Stackelberg solutions

Jack P.C. Kleijnen
A DSS for production planning: a case study including simulation and optimization

A.M.H. Gerards
A short proof of Tutte's characterization of totally unimodular matrices

Th. van de Klundert and F. van der Ploeg
Wage rigidity and capital mobility in an optimizing model of a small open economy