Group changes in cognitive performance after surgery mask changes in individual patients with glioblastoma

van Loenen, Inge; Rijnen, Sophie; Bruijn, Jimme; Rutten, Geert-Jan; Gehring, Karin; Sitskoorn, Margriet

Published in:
World Neurosurgery

Document version:
Peer reviewed version

DOI:
10.1016/j.wneu.2018.05.232

Publication date:
2018

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Accepted Manuscript

Group changes in cognitive performance after surgery mask changes in individual patients with Glioblastoma

Inge S. van Loenen, MSc, Sophie JM. Rijnen, MSc, Jimme Bruijn, MSc, Geert-Jan M. Rutten, PhD, Karin Gehring, PhD, Margriet M. Sitskoorn, PhD

PII: S1878-8750(18)31186-0
DOI: 10.1016/j.wneu.2018.05.232
Reference: WNEU 8294

To appear in: World Neurosurgery

Received Date: 12 February 2018
Revised Date: 29 May 2018
Accepted Date: 30 May 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Manuscript title: Group changes in cognitive performance after surgery mask changes in individual patients with Glioblastoma

Authors: Inge S van Loenen MSc a†, Sophie JM Rijnen MSc a,b†, Jimme Bruijn MSc a,b, Geert-Jan M Rutten PhD b, Karin Gehring PhD a,b, Margriet M Sitskoorn PhD a

†Co-first authorship

a Department of Cognitive Neuropsychology, Tilburg University, Prof. Cobbenhagenlaan 225, 5037 DB, Tilburg, The Netherlands

b Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Hilvarenbeekseweg 60, 5022 GC, Tilburg, The Netherlands

Corresponding author: Sophie JM Rijnen (E-mail address: s.j.m.rijnen@uvt.nl)

Keywords: Cognition; Glioma; Individual differences; Neuropsychological tests; Neurosurgery; Reliable change index
Abstract

OBJECT: There is a growing interest to include evaluations of cognitive performance in the clinical management of patients with Glioblastoma (GBM). However, as changes in cognitive performance of a group may mask changes in individual patients, study results are often difficult to transfer into clinical practice. We focused on the comparison of group versus individual changes in neuropsychological performance of GBM patients after initial surgical treatment. **METHODS:** Patients underwent neuropsychological evaluation using CNS Vital Signs one day prior to, and three months after surgery. Two-tailed paired samples t-tests were conducted to assess changes on the group level. Reliable Change Indices (RCIs), that correct for practice effects and imperfect test-retest reliabilities, were used to examine change in individual patients. **RESULTS:** Cognitive dysfunction was common (>80%) both before and three months after surgery in this sample of 82 GBM patients. Whereas group analyses revealed minimal changes in performance over time, RCIs demonstrated that most patients (89%) showed changes in performance in at least one cognitive domain. Half of these individual patients solely showed improvements, a quarter solely showed declines, and another quarter showed both improvements and declines. **CONCLUSIONS:** This study clearly demonstrates that important individual changes in performance are masked when looking only at group results. Future studies should more often use an individual patient approach to enhance knowledge transfer into clinical practice.
Introduction

Glioblastoma (GBM) is the most common and malignant type of primary brain tumor, and current standard of care is maximal safe resection followed by radio- and chemotherapy.\(^1\)\(^-\)\(^3\) Candidates for resective surgery should be in a reasonable general and neurological condition. In addition, the estimated risks of surgery should be acceptable in terms of postoperative neurological deficits. The decision whether to operate or not is thus largely based on clinical grounds and predominantly focuses on the patients’ general performance status (e.g., Karnofsky Performance Scale)\(^4\) and their sensorimotor and language capabilities. Although current guidelines stress the importance of cognitive functioning, and prior studies demonstrate cognitive deficits in GBM patients already prior to surgery, information on the patient’s cognitive status is currently seldom embedded in the clinical management of GBM patients.\(^3\),\(^5\)\(^-\)\(^12\)

It is well known that cognitive deficits can contribute to a lower quality of life of the patient.\(^13\),\(^14\) Also, cognitive dysfunction has been found to be a valuable indicator of disease severity, and potentially even for tumor progression.\(^15\),\(^16\) Therefore there is a growing interest to include the results of neuropsychological examinations into neuro-oncological practice. Such information would for example also be very informative when evaluating new surgical techniques (e.g., using 5-ALA) that push the boundaries of resection, but at the same time potentially endanger brain functioning.\(^17\)\(^-\)\(^19\)

Prior studies on group level cognitive function found widespread preoperative cognitive impairment, with modest, yet significant improvements in memory and information processing speed\(^6\),\(^9\),\(^20\), and decline in language and executive function postoperatively.\(^20\)\(^-\)\(^22\) However, results on performance of a group of patients may mask performance in individual patients, thereby making results difficult to transfer into clinical practice.\(^23\) Only very few studies focused on individual cognitive performance and change over time in GBM patients. These studies demonstrated improved performance in 24% to 49%, and declined performance in 23% to 38% of the patients postoperatively, where most changes were found in verbal memory, attention, and executive functioning.\(^6\),\(^20\) Overall, improvements of performance were more frequent than declines after surgery, despite a worsening of performance immediately after surgery.\(^6\),\(^20\),\(^24\) In these studies, fairly simple measures of change in performance (e.g., raw difference scores, subtracting preoperative from postoperative scores) were adopted. Previously, Wefel et al. (2011)\(^25\) adopted the widely used plain version of the Reliable Change Indice (RCI) of Jacobson and Truax (1991)\(^23\) to assess changes in cognitive
performance of patients with recurrent GBM treated with bevacizumab. Yet, in order to decide on reliable changes in performance one should account for very common methodological phenomena related to repeated neuropsychological assessment, such as practice effects. Interpreting performance without considering, for instance, practice effects might result in overestimations of improvement, or underestimations of decline in performance.

In the present study, cognitive impairments before and three months after initial surgical treatment were evaluated using a brief, computerized neuropsychological assessment (i.e., Central Nervous System Vital Signs, CNS VS; Morrisville, North Carolina) that was implemented into clinical neuro-oncological care of GBM patients. Furthermore, since we expect that declines and improvements of individual patients may be masked when looking at performance on the group level, we focused on the comparison of group versus reliable individual changes in neuropsychological performance of patients with GBM from pre- to post-surgery.

Methods

Patients

We included patients who underwent resective surgery between January 2011 and March 2016. Based on tissue obtained during surgery, all patients were diagnosed with a newly, histopathologically confirmed Glioblastoma (GBM).

Exclusion criteria were (a) age below 18 years; (b) previous intracranial neurosurgery; (c) recent (≤ 2 years) neurological or psychiatric disorders; (d) other major medical illnesses in the past year prior to surgery (e.g., cancer, myocardial infarct); (e) lack of basic proficiency in Dutch; (f) premorbid IQ below 85; and (g) inability to undergo neuropsychological assessment because of severe visual, motor or cognitive problems.

All patients provided written informed consent. The study was approved by the Medical Ethics Committee (file number NL41351.008.12).

Measures and procedure

Patients’ characteristics. Patients underwent neuropsychological evaluation per protocol one day before (T0) and three months after (T3) surgery as part of clinical care. Number of years of education was self-reported by patients during a standardized interview. Clinical information (i.e., data on medication use and adjuvant radio- or chemotherapy) was retrieved
from electronic medical charts. Tumor location was identified by the neurosurgeon. Maximum tumor diameter (in axial, sagittal or coronal plane) was determined by three trained researchers under direct supervision of the neurosurgeon, using contrast-enhanced T1-weighted Magnetic Resonance Images (MRI).

CNS VS. The formal Dutch translation of the computerized neuropsychological battery CNS VS was used to examine cognitive performance. CNS VS is widely used to assess cognitive functioning in patient groups (e.g., amongst others in patients with meningioma, mild cognitive impairment, and early dementia). It consists of seven neuropsychological tests that are based on paper-and-pencil tests, yielding measures of performance on 11 cognitive domains. Since some domains are largely based upon the same test scores, we only considered the following seven domains: Verbal Memory, Visual Memory, Processing Speed, Psychomotor Speed, Reaction Time, Complex Attention, and Cognitive Flexibility. After completing the battery raw cognitive domain scores, amongst others, are provided.

It takes 30-40 minutes to complete CNS VS. Assessments were performed using the CNS VSX local software app, on a laptop computer running a 64-bit operating system. Background programs were shut down and there were no connections to Internet resources. Well-trained test technicians remained present during the entire assessment.

Statistical analyses

Patients’ characteristics. Descriptive and comparative analyses of sociodemographic and clinical variables, and baseline cognitive performance of the patients who completed both assessments, versus patients who dropped out before follow-up were performed.

CNS VS normed cognitive domain scores. Effects of sociodemographic (i.e., age, sex, and education) variables on performance, and practice effects between the first and second assessment were found to be present in a Dutch normative sample. Therefore, raw cognitive domain scores of the patients were converted into sociodemographically-adjusted z-scores. With respect to the postoperative scores, practice effects were corrected for, in addition to the sociodemographic corrections.

Group level performance. To explore differences in mean CNS VS performance on the 7 cognitive domains between GBM patients and the normative sample before and three months after surgery, one-tailed one-sample z-tests were performed (test values: Mean Z=0, Standard
Deviation (SD)=1). In order to examine the magnitude of differences, we considered the mean z-score for each cognitive domain (representing the difference between the patient sample and the normative sample in terms of SDs) as effect size (ES). Please note that this equals Cohen’s d ES when calculated according to the formula $\frac{\text{Mean}_{\text{patients}} - \text{Mean}_{\text{controls}}}{\text{SD}}$, as here again $\text{Mean}_{\text{controls}}=0$ and $\text{SD}=1$. Small, medium, and large effects are considered to be represented by $d \leq 0.50$, between 0.51 and 0.80, and ≥ 0.80.32

Change. Two-tailed samples t-tests were conducted to assess changes over time in cognitive domain scores on the group level. ES were calculated and expressed as Cohen’s d following the formula: $\frac{\text{Mean}_{\text{difference T3-T0}}}{\text{SD}_{\text{difference}}}$. Again, with $d \leq 0.50 = \text{small effect,} \ 0.51 - 0.80 = \text{medium effect, and} \geq 0.80 = \text{large effect.}$32

Individual performance. To categorize cognitive performance of individual patients, z-scores of ≤ -2.00 were classified as very low, between -1.99 and -1.50 as low, between -1.49 and 1.49 as average, and ≥ 1.50 as high.33 Performance was defined as impaired if the z-score fell in the very low or low category (≤ -1.50). The numbers and percentages of patients scoring within each category for cognitive domains, and the number of impaired domains, were counted for both time-points.

Changes. In order to determine whether observed changes in scores reliably reflect true changes in performance whilst taking into account methodological confounds (such as practice effects and imperfect test-retest reliabilities), RCI values were calculated for each domain for each patient. A standardized regression based RCI described by Maassen, Bossema, and Brand (2009)27 was adopted. Rijnen et al (2018)31 describe details with regard to the RCI formulae for changes in CNS VS performance, which are established based on results on repeated testing in a Dutch normative sample (N=158) at baseline and three-month follow up. RCI formulae were established for each cognitive domain. No effects of age, sex, and education on changes over time in the normative sample were found, and consequently, these variables were not included in the formulae. Change was defined by RCI values exceeding ± 1.645 (corresponding with a two-tailed alpha of 0.10, 90% confidence interval), where positive values represented improvement, while negative values represented declined performance. The numbers of patients with improved, stable or declined cognitive performance were counted for each cognitive domain. In addition, a chi-square test of independence was conducted to compare the proportion of GBM patients in whose performance changed to the proportion of participants in the normative sample whose
performance changed over a three month interval (i.e., to test whether changes were significantly more frequent in GBM patients than in controls).

All statistical analyses were performed using SPSS version 24.0 (IBM Corporate Headquarters, Armonk, New York). Alpha was set at 0.05.

Results

Patients’ characteristics

Figure 1 shows the flowchart of GBM patients in the current study. At baseline, 125 patients were included. Forty-three patients (34%) did not complete follow-up, resulting in 82 patients with pre- and postoperative measurements. Table 1 presents sociodemographic and clinical characteristics of the GBM sample. There were no significant differences regarding sociodemographic and clinical variables, and baseline cognitive performance between patients who completed T0 and T3 and patients who dropped out of the study ($p > .05$; data not shown).

Group level performance

We found significantly lower performance of GBM patients as compared to the normative sample on all cognitive domains both before (ES ranging from -0.91 to -2.98) and three months after surgery (ES ranging from -0.69 to -2.22) ($p < .001$, see Table 2).

Preoperatively, mean z-scores as low as -2.98 and -2.36 were found for Complex Attention and Cognitive Flexibility, respectively. Postoperatively, lowest mean z-scores were observed for Reaction Time (-2.22) and again, Complex Attention (-2.00).

Group level changes. On the group level, paired samples t-tests revealed no significant changes in neuropsychological performance over time for CNS VS cognitive domains, except for Complex Attention, where postoperative performance was significantly higher ($t(73) = 2.17, p = .03$) (see Table 2). Effect sizes were small for each cognitive domain, with Cohen’s d ranging from -0.08 to 0.25.
Individual performance

Figure 2 shows the percentage of patients scoring within each category (i.e., very low, low, average or high) for each cognitive domain. Prior to surgery, 101 patients (82%) showed an impaired score \((z \leq -1.5)\) on at least one cognitive domain, whereas 67 patients (60%) showed an impaired score on at least three cognitive domains. On average, performance of patients was impaired in 3.2 domains. Cognitive Flexibility \((n=72, 62\%)\) and Complex Attention \((n=68, 58\%)\) were most frequently affected.

Postoperatively, 68 patients (84%) showed an impaired score on at least one cognitive domain, and 31 patients (41%) showed an impaired score on at least three cognitive domains. Performance was impaired in on average 2.8 cognitive domains. Most frequently impaired were the domains of Reaction Time \((n=44, 54\%)\) and Complex Attention \((n=38, 48\%).\)

Individual changes. Up to 89\% \((n=67)\) of the patients demonstrated reliable changes in performance in at least one cognitive domain from pre- to post-surgery, whereas 41\% \((n=31)\) of the patients showed reliable changes in three or more domains. The chi-square test of independence demonstrated that changes in at least one cognitive domain were significantly more frequent in GBM patients (89\%) as compared to in normative controls (49\%), \(X^2(1)=33.75, p<.001\). The same held for changes in at least three cognitive domains: again this was found significantly more often in GBM patients (41\%) as compared to in normative controls (5\%), \(X^2(1)=41.06, p<.001\).

Half of the 67 'changers' solely showed improvements (51\%, \(n=34\)) and 27\% of the patients solely declined, whereas 22\% showed both improvements and declines on separate cognitive domains. Change was most common for Reaction Time (55\%) and Cognitive Flexibility (50\%), the fewest changes occurred in Verbal (13\%) and Visual Memory (16\%).

Forty-eight of the 67 (72\%) patients who demonstrated preoperative cognitive impairments showed postoperative improvement, and up to 60\% of these improvers now demonstrated unimpaired levels of performance on at least one of the preoperative impaired domains. Improvement of prior impaired performance was most common for Reaction Time \((n=25, 31\%)\) and Psychomotor Speed \((n=23, 28\%)\). Performance of 14 patients (21\%) declined even further after surgery on domains that were already impaired preoperatively. Further decline was most common for Reaction time \((n=8, 10\%)\) and Cognitive Flexibility \((n=7, 9\%)\). Of the 75 patients who showed unimpaired performance on domains preoperatively, 33\% \((n=27)\) showed postoperative decline in these domain(s); in 70\% of these decliners performance dropped to an impaired level. Declined performance in previously
unimpaired domains was, again, most common for Reaction Time \((n=15, 18\%) \) and Psychomotor Speed \((n=9, 11\%) \). Fifteen percent \((n=12) \) of the patients showed further postoperative improvements on preoperatively already unimpaired domains, which was most common for Reaction Time \((n=4, 5\%) \) (see Figure 3).

Discussion

The current study evaluated cognitive functioning before and three months after surgical treatment in patients with GBM using a computerized clinical neuropsychological battery in order to compare group and individual changes.

We found extensive (i.e., mean \(z \)-scores ranging from -0.69 to -2.98) pre- and postoperative cognitive deficits in cognitive domains for GBM patients on the group level. Correspondingly, the vast majority of patients (>80%) showed impaired performance on at least one cognitive domain pre- and post-operatively when looking at individual GBM patients. This corresponds to prior studies using conventional paper-and-pencil neuropsychological tests.\(^6,9,20,24\) Complex Attention, Cognitive Flexibility, and Reaction Time were most severely impaired, \((z\)-scores ranging from -1.85 to -2.98), but also most frequently impaired following from the individual patient analyses. As many social, family, and professional activities rely on abilities covered by these cognitive functions (e.g., switching between tasks or conversations, decision making, and controlling behavior), patients are likely to experience far-reaching consequences of these impairments in their daily lives.\(^34\) Compared to other studies, we found relatively few impairments in Verbal and Visual Memory.\(^6,9,20,21\) CNS VS memory tests do not include a free recall condition, but solely rely on recognizing items – whereas studies reporting higher rates of memory impairments have assessed memory performance using free recall conditions.\(^6,9,20,21,24\) This might explain the lower rate of memory impairments in the current study.

Only minimal changes in neuropsychological performance on the group level were found from pre- to post-surgery. However, when using RCI values representing reliable changes in performance in individual patients, up to 89% of the patients showed substantial changes on at least one out of seven cognitive domains over time. Half of these patients solely showed improvements, a quarter solely showed declines, and another quarter of the patients
showed both improvements and declines. These findings clearly demonstrate that group results mask changes on the individual level.

Although postoperative improvement in performance was common, this does not imply return to unimpaired levels of cognitive functioning: more than one-third of the patients who showed postoperative improvement on preoperatively impaired domains remained impaired (since performance can improve from very low to low). Individual change (both improvements and declines in performance) was most common for Reaction Time. Overall it seems that the lower the performance the more improvement, and the higher the performance the more decline for the different cognitive domains (as is shown in Figure 3). From a methodological point of view, very low performance leaves the most room for improvements, whereas higher performance leaves the most room for decline. At the group level, only performance on Complex Attention improved significantly after surgery.

The rates of individual changes in cognitive performance in GBM patients described in the current study were higher as compared to change rates that were found in prior studies (e.g., ranging from 24-49%). This may be due to different definitions of change that were used over studies. For example, according to Habets et al. (2014), clinically significant improvement was defined as an increase in z-score of ≥1.5 SD from baseline to follow up and also, if the follow up score fell into the normal performance range of controls. Talacchi et al. (2011) used yet another definition of change, as impairments had to be less frequent (i.e., fewer domains impaired) or more frequent (additional domains impaired) to speak of changed performance. Furthermore, follow up assessments in these studies were conducted at an earlier stage (i.e., in the acute postoperative phase, or three weeks after surgery), whereas patients in the current study were assessed substantially later after surgery, when chemo- and/or radiotherapy had already started in most patients.

Of the preoperatively assessed patients, 66% also completed postoperative neuropsychological evaluation. Considering the severity of the illness and its profound treatment, this number is rather high, also when compared to other follow-up studies in GBM patients. The good retention of patients may be explained by the fact that the neuropsychological assessment was an essential part of clinical aftercare that was combined with other clinical appointments, and by the use of a rather short cognitive instrument. Implementing a brief neuropsychological assessment in the clinical care of brain tumor patients is an important step towards actually using neuropsychological information in the clinical management of these patients. Since patient burden (in terms of energy and time) should be limited, CNS VS may be a suitable and valuable method. However, one might
consider supplementing CNS VS limited memory tests (i.e., solely relying on recognition) by memory tests that also appeal to retrieval and learning efficiency.

It should be noted that we solely included patients who were considered appropriate candidates for surgery and capable of pre- and postoperative neuropsychological assessment. Consequently, results are likely biased towards an overestimation of cognitive performance in GBM patients in general.

As a consequence of multimodal treatment of GBM, survival in GBM patients has improved with overall survival reaching 27% at 2 years. Future studies should examine predictors of (changes in) individual cognitive performance, its effects on daily functioning and quality of life, and examine the longer-term course of cognitive functioning in GBM patients.

Conclusion

We found extensive and serious cognitive impairments both before and three months after surgery in GBM patients assessed using a computerized neuropsychological battery. At the group level, only minimal changes in neuropsychological performance occurred from pre- to post-surgery, whereas substantial differences in change were found at the individual level, with 89% of the patients changing on at least one cognitive domain. Half of these patients showed solely improvements, a quarter showed solely declines, and another quarter of the patients showed both improvements and declines. These findings clearly demonstrate that group results mask changes on the individual level. Future studies should therefore (also) employ an individual patient approach to enhance knowledge transfer into clinical practice. Furthermore, methodological confounds, such as practice effects, should be controlled for in research and clinical settings when statements about (changes in) cognitive performance of the individual patient are at aim.
References

Figure legends

Figure 1. Flowchart of Glioblastoma patients eligible for inclusion and follow up

Figure 2. Percentages of Glioblastoma patients with a z-score in the very low, low, average or high category for each cognitive domain, pre- (T0) and postoperatively (T3).

Note. T0 data is available for a range of 116 to 125 patients; T3 data is available for a range of 78 to 82 patients.

Figure 3. Number of patients within change categories (improved, stable, declined) displayed against preoperative performance categories (very low, low, average, or high) of GBM patients.

For example, 5 patients scored low on Verbal Memory preoperatively, of whom 2 patients improved, 2 patients were stable (i.e., the score remained low), and 1 patient declined after surgery.
Table 1. Baseline characteristics of GBM patients (N = 125)

<table>
<thead>
<tr>
<th>Sociodemographic characteristics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years): mean±SD (range)</td>
<td>58.6±11.9 (18-81)</td>
<td></td>
</tr>
<tr>
<td>Education (years): mean±SD^a</td>
<td>13.7±3.3</td>
<td></td>
</tr>
<tr>
<td>Sex: female n(%) / male n(%)</td>
<td>41 (33%) / 84 (67%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemisphere: left n(%) / right n(%)</td>
<td>45 (36%) / 80 (64%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supratentorial lobe</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal n(%)</td>
<td>38 (31%)</td>
<td></td>
</tr>
<tr>
<td>Fronto-insular n(%)</td>
<td>4 (3%)</td>
<td></td>
</tr>
<tr>
<td>Fronto-temporal-insular n(%)</td>
<td>4 (3%)</td>
<td></td>
</tr>
<tr>
<td>Fronto-parietal n(%)</td>
<td>2 (2%)</td>
<td></td>
</tr>
<tr>
<td>Temporal n(%)</td>
<td>26 (21%)</td>
<td></td>
</tr>
<tr>
<td>Temporo-occipital n(%)</td>
<td>10 (8%)</td>
<td></td>
</tr>
<tr>
<td>Temporo-parietal n(%)</td>
<td>8 (6%)</td>
<td></td>
</tr>
<tr>
<td>Temporo-insular n(%)</td>
<td>11 (9%)</td>
<td></td>
</tr>
<tr>
<td>Parietal n(%)</td>
<td>14 (11%)</td>
<td></td>
</tr>
<tr>
<td>Parieto-occipital n(%)</td>
<td>5 (4%)</td>
<td></td>
</tr>
<tr>
<td>Occipital n(%)</td>
<td>3 (2%)</td>
<td></td>
</tr>
</tbody>
</table>

| Tumor diameter (mm): mean±SD (range)^b | 54±15 (18-101) |

<table>
<thead>
<tr>
<th>Use of AEDs and corticosteroids</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None n(%)</td>
<td>13 (10%)</td>
<td></td>
</tr>
<tr>
<td>Corticosteroids n(%)</td>
<td>64 (51%)</td>
<td></td>
</tr>
<tr>
<td>AEDs n(%)</td>
<td>21 (17%)</td>
<td></td>
</tr>
<tr>
<td>AEDs and corticosteroids n(%)</td>
<td>18 (14%)</td>
<td></td>
</tr>
<tr>
<td>Unknown n(%)</td>
<td>9 (7%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional treatment between T0 and T3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None n(%)</td>
<td>3 (4%)</td>
<td></td>
</tr>
<tr>
<td>Radiotherapy n(%)</td>
<td>8 (9%)</td>
<td></td>
</tr>
<tr>
<td>Radiotherapy and chemotherapy n(%)</td>
<td>71 (87%)</td>
<td></td>
</tr>
</tbody>
</table>

GBM Glioblastoma AED anti-epileptic drug

^a Number of years completed education

^b In axial, sagittal or coronal plane, as determined by using contrast-enhanced T1-weighted MRI
Table 2. Comparison of mean performance of GBM patients pre- and post-operatively

<table>
<thead>
<tr>
<th>Cognitive domain</th>
<th>Mean z-score (SD)</th>
<th>N</th>
<th>z-test</th>
<th>p</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal Memory</td>
<td>-0.91 (1.28)</td>
<td>117</td>
<td>-9.82</td>
<td><.001*</td>
<td>-0.91</td>
</tr>
<tr>
<td>Visual Memory</td>
<td>-0.96 (1.28)</td>
<td>120</td>
<td>-10.57</td>
<td><.001*</td>
<td>-0.96</td>
</tr>
<tr>
<td>Processing Speed</td>
<td>-1.45 (1.37)</td>
<td>122</td>
<td>-16.09</td>
<td><.001*</td>
<td>-1.45</td>
</tr>
<tr>
<td>Psychomotor Speed</td>
<td>-1.59 (1.84)</td>
<td>121</td>
<td>-17.72</td>
<td><.001*</td>
<td>-1.59</td>
</tr>
<tr>
<td>Reaction Time</td>
<td>-2.16 (2.85)</td>
<td>117</td>
<td>-23.58</td>
<td><.001*</td>
<td>-2.16</td>
</tr>
<tr>
<td>Complex Attention</td>
<td>-2.98 (3.23)</td>
<td>117</td>
<td>-32.29</td>
<td><.001*</td>
<td>-2.98</td>
</tr>
<tr>
<td>Cognitive Flexibility</td>
<td>-2.36 (2.53)</td>
<td>116</td>
<td>-25.37</td>
<td><.001*</td>
<td>-2.36</td>
</tr>
<tr>
<td>Postoperative assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal Memory</td>
<td>-0.89 (1.39)</td>
<td>77</td>
<td>-7.79</td>
<td><.001*</td>
<td>-0.89</td>
</tr>
<tr>
<td>Visual Memory</td>
<td>-0.69 (1.20)</td>
<td>78</td>
<td>-6.05</td>
<td><.001*</td>
<td>-0.69</td>
</tr>
<tr>
<td>Processing Speed</td>
<td>-1.27 (1.24)</td>
<td>81</td>
<td>-10.84</td>
<td><.001*</td>
<td>-1.27</td>
</tr>
<tr>
<td>Psychomotor Speed</td>
<td>-1.20 (1.54)</td>
<td>81</td>
<td>-11.42</td>
<td><.001*</td>
<td>-1.20</td>
</tr>
<tr>
<td>Reaction Time</td>
<td>-2.22 (2.60)</td>
<td>82</td>
<td>-20.11</td>
<td><.001*</td>
<td>-2.22</td>
</tr>
<tr>
<td>Complex Attention</td>
<td>-2.00 (2.93)</td>
<td>79</td>
<td>-17.77</td>
<td><.001*</td>
<td>-2.00</td>
</tr>
<tr>
<td>Cognitive Flexibility</td>
<td>-1.85 (2.14)</td>
<td>81</td>
<td>-16.62</td>
<td><.001*</td>
<td>-1.85</td>
</tr>
<tr>
<td>T0-T3 pairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal Memory</td>
<td>-0.01 (1.14)</td>
<td>71</td>
<td>-.09</td>
<td>.93</td>
<td>-0.01</td>
</tr>
<tr>
<td>Visual Memory</td>
<td>0.09 (1.31)</td>
<td>75</td>
<td>.60</td>
<td>.55</td>
<td>0.07</td>
</tr>
<tr>
<td>Processing Speed</td>
<td>0.15 (1.12)</td>
<td>79</td>
<td>1.19</td>
<td>.24</td>
<td>0.13</td>
</tr>
<tr>
<td>Psychomotor Speed</td>
<td>0.33 (1.57)</td>
<td>79</td>
<td>1.88</td>
<td>.06</td>
<td>0.21</td>
</tr>
<tr>
<td>Reaction Time</td>
<td>-0.18 (2.32)</td>
<td>76</td>
<td>-0.67</td>
<td>.51</td>
<td>-0.08</td>
</tr>
<tr>
<td>Complex Attention</td>
<td>0.76 (3.01)</td>
<td>73</td>
<td>2.17</td>
<td>.03*</td>
<td>0.25</td>
</tr>
<tr>
<td>Cognitive Flexibility</td>
<td>0.36 (2.15)</td>
<td>74</td>
<td>1.44</td>
<td>.15</td>
<td>0.17</td>
</tr>
</tbody>
</table>

*p < .05

Reactions Time is based upon time components of neuropsychological tests, all other domains reflect response (i.e., correct/incorrect) components of neuropsychological tests.

Negative z-scores imply lower performance of patients as compared to the normgroup, and vice versa for positive z-scores.

Positive change scores imply higher performance of patients on T3 compared to T0, and vice versa for a negative change score.

The number of patients differs over cognitive domains as a consequence of missing or invalid scores on the pre- or postoperative assessment.

Cohen’s d effect size: ≤ 0.50 = small, 0.51 - 0.80 = medium, ≥ 0.80 = large.
GBM patients eligible for inclusion between January 2011 and March 2016 ($N = 147$)

Excluded ($n = 22$):
- Testing too burdensome ($n = 11$)
- Patient cancelled/absent ($n = 6$)
- No informed consent ($n = 2$)
- Lack of basic proficiency in Dutch ($n = 2$)
- Logistic problems ($n = 1$)

Neuropsychological examination T0 ($N = 125$)

Drop-out after baseline ($n = 43$):
- Patient cancelled/absent ($n = 22$)
- Testing too burdensome ($n = 9$)
- Patient deceased ($n = 8$)
- Transfer of treatment to another hospital ($n = 3$)
- Surgery cancelled due to deteriorated clinical status ($n = 1$)

Neuropsychological examination T3 ($N = 82$)
CNS VS cognitive domains
Highlights:

• Three months after GBM surgery, mean cognitive performance changed only minimally

• Almost all individual patients showed reliable change in cognitive performance

• Performance changes included improvements (51%), declines (27%), or both (22%)

• Changes in mean scores of cognitive performance mask changes in individual patients
Abbreviations list:
CNS VS Central Nervous System Vital Signs; ES effect size; GBM glioblastoma; M mean; MRI magnetic resonance image; RCI reliable change index; SD standard deviation